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Abstract. TLA+ is a specification language based on standard set the-
ory and temporal logic that has constructs for hierarchical proofs. We
describe how to write TLA+ proofs and check them with TLAPS, the
TLA+ Proof System. We use Peterson’s mutual exclusion algorithm as
a simple example and show how TLAPS and the Toolbox (an IDE for
TLA+) help users to manage large, complex proofs.

1 Introduction

TLA+ [5] is a specification language originally designed for specifying concurrent
and distributed systems and their properties. It is based on Zermelo-Fraenkel set
theory for modeling data structures and on the linear-time temporal logic TLA
for specifying system executions and their properties. More recently, constructs
for writing proofs have been added to TLA+, following a proposal for presenting
rigorous hand proofs in a hierarchical style [8].

In this paper, we present the main ideas that guided the design of the proof
language and its implementation in TLAPS, the TLA+ proof system [3, 13].
The proof language and TLAPS have been designed to be independent of any
particular theorem prover. All interaction takes place at the level of TLA+. Users
need know only what sort of reasoning TLAPS’s backend provers tend to be good
at—for example, that SMT solvers excel at arithmetic. This knowledge is gained
mostly by experience.

TLAPS has a Proof Manager (PM) that transforms a proof into individual
proof obligations that it sends to backend provers. Currently, the main back-
end provers are Isabelle/TLA+, an encoding of TLA+ as an object logic in Is-
abelle [14], Zenon [2], a tableau prover for classical first-order logic with equal-
ity, and a backend for SMT solvers. Isabelle serves as the most trusted backend
prover, and when possible, we expect backend provers to produce a detailed
proof that is checked by Isabelle. This is currently implemented for the Zenon
backend.

?? This work was partially funded by Inria-Microsoft Research Joint Centre, France.
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TLAPS has been integrated into the TLA+ Toolbox, an IDE (Integrated
Development Environment) based on Eclipse for writing TLA+ specifications
and running the TLA+ tools on them, including the TLC model checker. The
Toolbox provides commands to hide and unhide parts of a proof, allowing a user
to focus on a given proof step and its context. It is also invaluable to be able to
run the model checker on the same formulas that one reasons about.

We explain how to write and check TLA+ proofs, using a tiny well-known
example: a proof that Peterson’s algorithm [12] implements mutual exclusion. We
start by writing the algorithm in PlusCal [6], an algorithm language that is based
on the expression language of TLA+. The PlusCal code is translated to a TLA+

specification, which is what we reason about. Section 3 introduces the salient
features of the proof language and of TLAPS with the proof of mutual exclusion.
Liveness of Peterson’s algorithm (processes eventually enter their critical section)
can also be asserted and proved with TLA+. However, liveness reasoning makes
full use of temporal logic, and TLAPS cannot yet check temporal logic proofs.

Section 4 indicates the features that make TLA+, TLAPS, and the Toolbox
scale to realistic examples. A concluding section summarizes what we have done
and our plans for future work.

2 Modeling Peterson’s Algorithm In TLA+

Peterson’s algorithm is a classic, very simple two-process mutual exclusion al-
gorithm. We specify the algorithm in TLA+ and prove that it satisfies mutual
exclusion: no two processes are in their critical sections at the same time.6

A representation of Peterson’s algorithm in the PlusCal algorithm language
is shown on the left-hand side of Figure 1. The two processes are named 0 and 1;
the PlusCal code is embedded in a TLA+ module that defines an operator Not
so that Not(0) = 1 and Not(1) = 0.

The variables statement declares the variables and their initial values. For
example, the initial value of flag is an array such that flag [0] = flag [1] = false.
(Mathematically, an array is a function; the TLA+ notation [x ∈ S 7→ e] for
writing functions is similar to a lambda expression.) To specify a multiprocess
algorithm, it is necessary to specify what its atomic actions are. In PlusCal, an
atomic action consists of the execution from one label to the next. With this
brief explanation, the reader should be able to figure out what the code means.

A translator, normally called from the Toolbox, generates a TLA+ specifica-
tion from the PlusCal code. We illustrate the structure of the TLA+ translation
in the right-hand part of Figure 1. The heart of the TLA+ specification consists
of the predicates Init describing the initial state and Next , which represents the
next-state relation.

The PlusCal translator adds a variable pc to record the control state of
each process. The meaning of formula Init in the figure is straightforward. The
formula Next is the disjunction of the two formulas proc(0) and proc(1), which

6 The TLA+ module containing the specification and proof as well as an extended
version of this paper are accessible at the TLAPS Web page [13].
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--algorithm Peterson {
variables

flag = [i ∈ {0, 1} 7→ false],
turn = 0;

process (proc ∈ {0, 1}) {
a0: while (true) {
a1: flag [self ] := true;
a2: turn := Not(self );

a3a: if (flag [Not(self )])
{goto a3b}

else {goto cs} ;
a3b: if (turn = Not(self ))

{goto a3a}
else {goto cs} ;

cs: skip; \∗ critical section
a4: flag [self ] := false;

} \∗ end while
} \∗ end process
} \∗ end algorithm

variables flag , turn, pc

vars
∆
= 〈flag , turn, pc〉

Init
∆
= ∧ flag = [i ∈ {0, 1} 7→ false]

∧ turn = 0

∧ pc = [self ∈ {0, 1} 7→ “a0”]

a3a(self )
∆
=

∧ pc[self ] = “a3a”

∧ if flag [Not(self )]

then pc′ = [pc except ![self ] = “a3b”]

else pc′ = [pc except ![self ] = “cs”]

∧ unchanged 〈flag , turn〉

\∗ remaining actions omitted

proc(self )
∆
= a0(self ) ∨ . . . ∨ a4(self )

Next
∆
= ∃ self ∈ {0, 1} : proc(self )

Spec
∆
= Init ∧ 2[Next ]vars

Fig. 1. Peterson’s algorithm in PlusCal (left) and in TLA+ (excerpt, right).

are in turn defined as disjunctions of formulas corresponding to the atomic steps
of the process. In these formulas, unprimed variables refer to the old state and
primed variables to the new state. The temporal formula Spec is the complete
specification. It characterizes behaviors (ω-sequences of states) that start in a
state satisfying Init and where every pair of successive states either satisfies Next
or else leaves the values of the tuple vars unchanged.7

Before trying to prove that the algorithm is correct, we use TLC, the TLA+

model checker, to check it for errors. The Toolbox runs TLC on a model of a
TLA+ specification. A model usually assigns particular values to specification
constants, such as the number of processes. It can also restrict the set of states
explored, which is useful if the specification allows an infinite number of reachable
states. TLC easily verifies that the two processes can never both be at label cs by
checking that the following formula is an invariant (true in all reachable states):

MutualExclusion
∆
= (pc[0] 6= “cs”) ∨ (pc[1] 6= “cs”)

Peterson’s algorithm is so simple that TLC can check all possible executions. For
more interesting algorithms that have parameters (such as the number of pro-
cesses) and perhaps an infinite set of reachable states, TLC cannot exhaustively
verify all executions, and correctness can only be proved deductively. Still, TLC
is invaluable for catching errors, and it is much easier to run TLC than to write
a formal proof.

7 “Stuttering steps” are allowed in order to make refinement simple [4].
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theorem Spec ⇒ 2MutualExclusion
〈1〉1. Init ⇒ Inv
〈1〉2. Inv ∧ [Next ]vars ⇒ Inv ′

〈1〉3. Inv ⇒ MutualExclusion
〈1〉4. qed

Fig. 2. The high-level proof.

3 Proving Mutual Exclusion For Peterson’s Algorithm

The assertion that Peterson’s algorithm implements mutual exclusion is formal-
ized in TLA+ as the theorem in Figure 2. The standard method of proving this
invariance property is to find an inductive invariant Inv such that the steps
〈1〉1–〈1〉3 of Figure 2 are provable.

TLA+ proofs are hierarchically structured and are generally written top-
down. Each proof in the hierarchy ends with a qed step that asserts the proof’s
goal. We usually write the qed step’s proof before the proofs of the intermediate
steps. The qed step follows easily from steps 〈1〉1–〈1〉3 by standard proof rules
of temporal logic. However, TLAPS does not yet handle temporal reasoning, so
we omit that step’s proof. When temporal reasoning is added to TLAPS, we
expect it easily to check such a trivial proof.

Figure 3 defines the inductive invariant Inv as the conjunction of two formu-
las. (A definition must precede its use, so the definition of Inv appears in the
module before the proof.) The first, TypeOK , asserts simply that the values of
all variables are elements of the expected sets. (The expression [S → T ] is the
set of all functions whose domain is S and whose range is a subset of T .) In
an untyped logic like that of TLA+, almost any inductive invariant must assert
type correctness. The second conjunct, I , is the interesting one that explains
why Peterson’s algorithm implements mutual exclusion. We again use TLC to
check that Inv is indeed an invariant. In our simple example, TLC can even
check that Inv is inductive, by checking that it is an (ordinary) invariant of
the specification Inv ∧2[Next ]vars , obtained from Spec by replacing the initial
condition by Inv .

TypeOK
∆
= ∧ pc ∈ [ {0, 1} → {“a0”, “a1”, “a2”, “a3a”, “a3b”, “cs”, “a4”} ]
∧ turn ∈ {0, 1}
∧ flag ∈ [ {0, 1} → boolean ]

I
∆
= ∀i ∈ {0, 1} :

∧ pc[i ] ∈ {“a2”, “a3a”, “a3b”, “cs”, “a4”} ⇒ flag [i ]
∧ pc[i ] ∈ {“cs”, “a4”} ⇒ ∧ pc[Not(i)] /∈ {“cs”, “a4”}

∧ pc[Not(i)] ∈ {“a3a”, “a3b”} ⇒ turn = i

Inv
∆
= TypeOK ∧ I

Fig. 3. The inductive invariant.
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〈1〉2. Inv ∧ [Next ]vars ⇒ Inv ′

〈2〉1. suffices assume Inv ,Next prove Inv ′

〈2〉2. TypeOK ′

〈2〉3. I ′

〈3〉1. suffices assume new j ∈ {0, 1} prove I !(j )′

〈3〉2. pick i ∈ {0, 1} : proc(i)
〈3〉3. case i = j
〈3〉4. case i 6= j
〈3〉5. qed

〈2〉4. qed

Fig. 4. Outline of a hierarchical proof of step 〈1〉2.

We now prove steps 〈1〉1–〈1〉3. We can prove them in any order; let us start
with 〈1〉1. This step follows easily from the definitions, and the following leaf
proof is accepted by TLAPS:

by def Init , Inv , TypeOK , I

TLAPS will not expand definitions unless directed to so. In complex proofs,
automatically expanding definitions often leads to formulas that are too big for
provers to handle. Forgetting to expand some definition is a common mistake. If
a proof does not succeed, the Toolbox displays the exact proof obligation that
it passed to the prover. It is then usually easy to see which definitions need to
be invoked.

Step 〈1〉3 is proved the same way, by simply expanding the definitions of
MutualExclusion, Inv , I , and Not . We next try the same technique on 〈1〉2. A
little thought shows that we have to tell TLAPS to expand all the definitions in
the module up to and including the definition of Next , except for the definition
of Init . Unfortunately, when we direct TLAPS to prove the step, it fails to do
so, reporting a 65-line proof obligation.

TLAPS uses Zenon and Isabelle as its default backend provers. However,
TLAPS also includes an SMT solver backend [10] that is capable of handling
larger “shallow” proof obligations—in particular, ones that do not contain sig-
nificant quantifier reasoning. We instruct TLAPS to use the SMT backend when
proving the current step by writing

by SMT def . . .

The backend translates the proof obligation to the input language of SMT
solvers. In this way, step 〈1〉2 is proved in a few seconds. For sufficiently compli-
cated algorithms, an SMT solver will not be able to prove inductive invariance as
a single obligation. Instead, the proof will have to be hierarchically decomposed.
We illustrate how this is done by writing a proof of 〈1〉2 that can be checked
using only the Zenon and Isabelle backend provers.

The outline of a hierarchical proof of step 〈1〉2 appears in Figure 4. The proof
introduces more elements of the TLA+ proof language that we now explain.
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A suffices step allows a user to introduce an auxiliary assertion, from which
the current goal can be proved. For example, step 〈2〉1 reduces the proof of
the implication asserted in step 〈1〉2 to assuming predicates Inv and Next , and
proving Inv ′. In particular, this step establishes that the invariant is preserved
by stuttering steps that leave the tuple vars unchanged. Steps 〈2〉2 and 〈2〉3
establish the two conjuncts in the definition of Inv . Whereas 〈2〉2 can be proved
directly by Isabelle, 〈2〉3 needs some more interaction.

Following the definition of predicate I as a universally quantified formula, we
introduce in step 〈3〉1 a new variable j , assume that j ∈ {0, 1}, and prove I !(j )′,
which denotes the body of the universally quantified formula, with j substituted
for the bound variable, and with primed copies of all state variables. Similarly,
step 〈3〉2 introduces variable i to denote the process that makes a transition,
following the definition of Next (which is assumed in step 〈2〉1). Even after this
elimination of two quantifiers, Isabelle and Zenon cannot prove the goal in a
single step. The usual way of decomposing the proof is to reason separately
about each atomic action a0(i), . . . , a4(i). However, Peterson’s algorithm is
simple enough that we can just split the proof into the two cases i = j and i 6= j
with steps 〈3〉3 and 〈3〉4. Isabelle and Zenon can now prove all the steps.

4 Writing Real Proofs

Peterson’s algorithm is a tiny example. Some larger case studies have been car-
ried out using the system [7, 9, 11]. Several features of TLAPS and its Toolbox
interface help in coping with the complexity of large proofs.

4.1 Hierarchical Proofs And The Proof Manager

Hierarchical structure is the key to managing complexity. TLA+’s hierarchical
and declarative proof language enables a user to keep decomposing a complex
proof into smaller steps until the steps become provable by one of the backend
provers. In logical terms, proof steps correspond to natural-deduction sequents
that must be proved in the current context. The Proof Manager tracks the
context, which is modified by non-leaf proof steps. For leaf proof steps, it sends
the corresponding sequent to the backend provers, and records the result of the
step’s proof that they report.

Proof obligations are independent of one another, so users can develop proofs
in any order and work on different proof steps independently. The Toolbox makes
it easy to instruct TLAPS to check the proof of everything in a file, of a single
theorem, or of any step in the proof hierarchy. Its editor helps reading and writing
large proofs, providing commands that show or hide subproofs. Although some
other interactive proof systems offer hierarchical proofs, we do not know of other
systems that provide the Toolbox’s abilities to use that structure to aid in reading
and writing proofs and to prove steps in any order.

Hierarchical proofs are much better than conventional lemmas for handling
complexity. In a TLA+ proof, each step with a non-leaf proof is effectively a

ha
l-0

07
26

63
1,

 v
er

si
on

 1
 - 

27
 M

ar
 2

01
3



lemma. One typical 1100-line invariance proof [7] contains 100 such steps. A
conventional linear proof with 100 lemmas would be impossible to read.

Unlike most interactive proof assistants [15], TLAPS is independent of any
specific backend prover. There is no way for a user to indicate how available facts
should be used by backends. TLA+ proofs are therefore less sensitive to changes
in any prover’s implementation.

4.2 Fingerprinting: Tracking The Status Of Proof Obligations

During proof development, a user repeatedly modifies the proof structure or
changes details of the specification. By default, TLAPS does not re-prove an
obligation that it has already proved—even if the proof has been reorganized. It
can also show the user the impact of a change by indicating which parts of the
existing proof must be re-proved.

The Proof Manager computes a fingerprint of every obligation, which it
stores, along with the obligation’s status, in a separate file. The fingerprint is a
compact canonical representation of the obligation and the relevant part of its
context. The Toolbox displays the proof status of each step, indicating by color
whether the step has been proved or some obligation in its proof has failed or
been omitted. The only other proof assistant that we know to offer a mechanism
comparable to our fingerprinting facility is the KIV system [1].

5 Conclusion

The proof of Peterson’s algorithm illustrates the main constructs of the hierar-
chical and declarative TLA+ proof language. The algorithm is so simple that we
had to eschew the use of the SMT solver backend so we could write a nontrivial
proof. Section 4 explains why TLAPS, used with the TLA+ Toolbox, can handle
more complex algorithms and specifications.

A key feature of TLAPS is its use of multiple backend provers. Different proof
techniques, such as resolution, tableau methods, rewriting, and SMT solving offer
complementary strengths. Future versions of TLAPS will probably support ad-
ditional backend provers. Because multiple backends raise concerns about sound-
ness, TLAPS provides the option of having Isabelle certify proof traces produced
by backend provers; and this has been implemented for Zenon. Still, it is much
more likely that a proof is meaningless because of an error in the specification
than that it is wrong because of an error in a backend. Soundness also depends
on parts of the proof manager.

We cannot overstate the importance of having TLAPS integrated with the
other TLA+ tools—especially the TLC model checker. Finding errors by run-
ning TLC on finite instances of a specification is much faster and easier than
discovering them when writing a proof. Also, verifying an algorithm or system
may require standard mathematical results. For example, the correctness of a
distributed algorithm might depend on known facts about graphs. Engineers
want to assume such results, not prove them. However, it is easy to make a
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mistake when formalizing mathematics. TLC can check the exact TLA+ for-
mulas assumed in a proof (on finite instances), greatly reducing the chance of
introducing an unsound assumption.

We are actively developing TLAPS. Our main short-term objective is to add
support for temporal reasoning. We have designed a smooth extension of the
existing proof language to sequents containing temporal formulas. We also plan
to improve support for standard TLA+ data structures such as sequences.
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