
A TLA+ Proof System
Kaustuv Chaudhuri

INRIA
Damien Doligez

INRIA
Leslie Lamport

Microsoft Research
Stephan Merz

INRIA & Loria

Abstract

We describe an extension to the TLA+ specification language with constructs for writing proofs
and a proof environment, called the Proof Manager (PM), to checks those proofs. The language
and the PM support the incremental development and checkingof hierarchically structured proofs.
The PM translates a proof into a set of independent proof obligations and calls upon a collection of
back-end provers to verify them. Different provers can be used to verify different obligations. The
currently supported back-ends are the tableau prover Zenonand Isabelle/TLA+, an axiomatisation of
TLA+ in Isabelle/Pure. The proof obligations for a complete TLA+2 proof can also be used to certify
the theorem in Isabelle/TLA+.

1 Introduction

TLA+ is a language for specifying the behavior of concurrent and distributed systems and asserting prop-
erties of those systems [11]. However, it provides no way to write proofs of those properties. We have
designed an extended version of the language that allows writing proofs, and we have begun implement-
ing a system centered around aProof Manager(PM) that invokes existing automated and interactive
proof systems to check those proofs. For now, the new versionof TLA+ is called TLA+2 to distinguish
it from the current one. We describe here the TLA+2 proof constructs and the current state of the proof
system.

The primary goal of TLA+2 and the proof system is the mechanical verification of systems speci-
fications. The proof system must not only support the modal and temporal aspects of TLA needed to
reason about system properties, but must also support ordinary mathematical reasoning in the underlying
logic. Proofs in TLA+2 are natural deduction proofs written in a hierarchical style that we have found to
be good for ordinary mathematics [9] and crucial for managing the complexity of correctness proofs of
systems [6].

The PM computes proof obligations that establish the correctness of the proof and sends them to one
or more back-end provers to be verified. Currently, the back-end provers are Isabelle/TLA+, a faithful
axiomatization of TLA+ in Isabelle/Pure, and Zenon [2], a tableau prover for classical first-order logic
with equality. The PM first sends a proof obligation to Zenon.If Zenon succeeds, it produces an Isar
script that the PM sends to Isabelle to check. Otherwise, thePM outputs an Isar script that uses one of
Isabelle’s automated tactics. In both cases, the obligations are certified by Isabelle/TLA+. The system
architecture easily accommodates other back-end provers;if these are proof-producing, then we can
use their proofs to certify the obligations in Isabelle/TLA+, resulting in high confidence in the overall
correctness of the proof.

The TLA+2 proof constructs are described in Section 2. Section 3 describes the proof obligations
generated by the PM, and Section 4 describes how the PM uses Zenon and Isabelle to verify them. The
conclusion summarizes what we have done and not yet done and briefly discusses related work.

2 TLA+ and its Proof Language

2.1 TLA

The TLA+ language is based on the Temporal Logic of Actions (TLA) [10], a linear-time temporal logic.
The rigid variables of TLA are calledconstantsand the flexible variables are called simplyvariables.
TLA assumes an underlying ordinary (non-modal) logic for constructing expressions. Operators of that
logic are calledconstantoperators. Astate functionis an expression built from constant operators and

1

A TLA+ Proof System Chaudhuri, Doligez, Lamport, and Merz

TLA constants and variables. The elementary (non-temporal) formulas of TLA areactions, which are
formulas built with constant operators, constants, variables, and expressions of the formf ′, where f is
a state function. (TLA also has anenabled operator that is used in expressing fairness, but we ignore it
for brevity.) An action is interpreted as a predicate on pairs of states that describes a set of possible state
transitions, where state functions refer to the starting state and primed state functions refer to the ending
state. Because priming distributes over constant operators and becausec′ is equal toc for any constant
c, an action can be reduced to a formula built from constant operators, constants, variables, and primed
variables.

TLA is practical for describing systems because all the complexity of a specification is in the action
formulas. Temporal operators are essentially used only to assert liveness properties, including fairness
of system actions. Most of the work in a TLA proof is in provingaction formulas; temporal reasoning
occurs only in proving liveness properties and is limited topropositional temporal logic and to applying
a handful of proof rules whose main premises are action formulas. Because temporal reasoning is such
a small part of TLA proofs, we have deferred its implementation. The PM now handles only action
formulas. We have enough experience mechanizing TLA’s temporal reasoning [4] to be fairly confident
that it will not be hard to extend the PM to support it.

A formula built from constant operators, constants, variables, and primed variables is valid iff it
is a valid formula of the underlying logic when constants, variables, and primed variables are treated
as distinct variables of the logic—that is, ifv andv′ are considered to be two distinct variables of the
underlying logic, for any TLA variablev. Since any action formula is reducible to such a formula, action
reasoning is immediately reducible to reasoning in the underlying logic. We therefore ignore variables
and priming here and consider only constant formulas.

2.2 TLA+

The TLA+ language adds the following to the TLA logic:

• An underlying logic that is essentially ZFC set theory plus classical untyped first-order logic with
Hilbert’s ε [13]. The major difference between this underlying logic and traditional ZFC isthat
functions are defined axiomatically rather than being represented as sets of ordered pairs.
• A mechanism for defining operators, where a user-defined operator is essentially a macro that is

expanded syntactically. (TLA+ permits recursive function definitions, but they are translated to
ordinary definitions using Hilbert’sε.)
• Modules, where one module can import definitions and theorems from other modules. A module

is parameterized by its declared variables and constants, and it may be instantiated in another
module by substituting expressions for its parameters. Thecombination of substitution and the
enabled operator introduces some complications, but space limitations prevent us from discussing
them, so we largely ignore modules in this paper.

TLA+ has been extensively documented [11]. Since we are concerned only with reasoning about its
underlying logic, which is a very familiar one, we do not bother to describe TLA+ in any detail. All of
its nonstandard notation that appears in our examples is explained.

2.3 The Proof Language

The major new feature of TLA+2 is its proof language. (For reasons having nothing to do withproofs,
TLA+2 also introduces recursive operator definitions, which we ignore here for brevity.) We describe the
basic proof language, omitting a few constructs that concern aspects such as module instantiation that
we are not discussing. TLA+2 also adds constructs for naming subexpressions of a definition or theorem,
which is important in practice for writing proofs but is orthogonal to the concerns of this paper.

2

A TLA+ Proof System Chaudhuri, Doligez, Lamport, and Merz

The goal of the language is to make proofs easy to read and write for someone with no knowledge of
how the proofs are being checked. This leads to a mostly declarative language, built around the uses and
proofs of assertions rather than around the application of proof-search tactics. It is therefore more akin
to Isabelle/Isar [17] than to more operational interactive languages such as Coq’s Vernacular [16]. Nev-
ertheless, the proof language does include a few operational constructs that can eliminate the repetition
of common idioms, albeit with some loss of perspicuity.

At any point in a TLA+ proof, there is a current obligation that is to be proved. Theobligation
contains acontextof known facts, definitions, and declarations, and agoal. The obligation claims that
the goal is logically entailed by the context. Some of the facts and definitions in the context are marked
(explicitly or implicitly) asusablefor reasoning, while the remaining facts and definitions arehidden.

Proofs are structured hierarchically. The leaf (lowest-level) proof obvious asserts that the current
goal follows easily from the usable facts and definitions. The leaf proof

by e1, . . . ,em defs o1, . . . ,on

asserts that the current goal follows easily from the usablefacts and definitions together with (i) the facts
ei that must themselves follow easily from the context and (ii)the known definitions ofo j . Whether a
goal follows easily from definitions and facts depends on whois trying to prove it. For each leaf proof,
the PM sends the correspondingleaf obligationto the back-end provers, so in practice “follows easily”
means that a back-end prover can prove it. A non-leaf proof isa sequence ofsteps, each consisting
of a begin-step token and a proof construct. For some constructs (including a simple assertion of a
proposition) the step takes a subproof, which may be omitted. The final step in the sequence simply
asserts the current goal, which is represented by the tokenqed. A begin-step token is either alevel token
of the form〈n〉 or a label of the form〈n〉l, wheren is a level number that is the same for all steps of this
non-leaf proof, andl is an arbitrary name. The hierarchical structure is deducedfrom the level numbers
of the begin-step tokens, a higher level number beginning a subproof.

Some steps make declarations or definitions or change the current goal and do not require a proof.
Other steps make assertions that become the current goals for their proofs. An omitted proof (or one
consisting of the tokenomitted) is considered to be a leaf proof that instructs the assertion to be accepted
as true. Of course, the proof is then incomplete. From a logical point of view, an omitted step is the
same as an additional assumption added to the theorem; from apractical point of view, it doesn’t have
to be lifted from its context and stated at the start. Omittedsteps are intended to be used only in the
intermediate stages of writing a proof.

Following a step that makes an assertion (and the step’s proof), until the end of the current proof
(after theqed step), the contexts contain that assertion in their sets of known facts. The assertion is
marked usable iff the begin-step token is a level token; otherwise it can be referred to by its label in aby
proof or made usable with ause step.

The hierarchical structure of proofs not only aids in reading the finished proof but is also quite useful
in incrementally writing proofs. The steps of a non-leaf proof are first written with all proofs but that
of the qed step omitted. After checking the proof of theqed step, the proofs omitted for other steps
in this or earlier levels are written in any order. When writing the proof, one may discover facts that
are needed in the proofs of multiple steps. Such a fact is thenadded to the proof as an earlier step, or
added at a higher level. It can also be removed from the proof of the theorem and proved separately as a
lemma. However, the hierarchical proof language encourages facts relevant only for a particular proof to
be kept within the proof, making the proof’s structure easier to see and simplifying maintenance of the
proof. For correctness proofs of systems, the first few levels of the hierarchy are generally determined by
the structure of the formula to be proved—for example, the proof that a formula implies a conjunction
usually consists of steps asserting that it implies each conjunct.

3

A TLA+ Proof System Chaudhuri, Doligez, Lamport, and Merz

As an example, we incrementally construct a hierarchical proof of Cantor’s theorem, which states
that there is no surjective function from a set to its powerset. It is written in TLA+ as:

theorem ∀S : ∀ f ∈ [S→ subset S] : ∃A ∈ subset S : ∀x ∈ S : f [x] , A

where function application is written using square brackets, subset S is the powerset ofS, and [S→ T]
is the set of functions fromS to T.

The statement of the theorem is the current goal for its top-level proof. A goal of the form∀v : e
is proved by introducing a generic constant and proving the formula obtained by substituting it for the
bound identifier. We express this as follows, using theassume/prove construct of TLA+2:

theorem ∀S : ∀ f ∈ [S→ subset S] : ∃A ∈ subset S : ∀x ∈ S : f [x] , A
〈1〉1. assume new S,

new f ∈ [S→ subset S]
prove ∃A ∈ subset S : ∀x ∈ S : f [x] , A

〈1〉2. qed by 〈1〉1

Although we could have used labels such as〈1〉oneand〈1〉last instead of〈1〉1 and〈1〉2, we have found
that proofs are easier to read when steps at the same level arelabeled with consecutive numbers. One
typically starts using consecutive step numbers and then uses labels like〈3〉2a for inserting additional
steps. When the proof is finished, steps are renumbered consecutively. (A planned user interface will
automate this renumbering.)

Step〈1〉1 asserts that for any constantsS and f with f ∈ [S→ subset S], the proposition to the right
of theprove is true. More precisely, the current context for the (as yet unwritten) proof of〈1〉1 contains
the declarations ofS and f and the usable factf ∈ [S→ subset S], and theprove assertion is its goal.
Theqed step states that the original goal (the theorem) follows from the assertion in step〈1〉1.

We tell the PM to check this (incomplete) proof, which it doesby having the back-end provers verify
the proof obligation for theqed step. The verification succeeds, and we now continue by writing the
proof of 〈1〉1. (Had the verification failed because〈1〉1 did not imply the current goal, we would have
caught the error before attempting to prove〈1〉1, which we expect to be harder to do.)

We optimistically start with the proofobvious, but it is too hard for the back-end to prove, and the
PM reports a timeout. Often this means that a necessary fact or definition in the context is hidden and
we merely have to make it usable with ause step or aby proof. In this case we have no such hidden
assumptions, so we must refine the goal into simpler goals with a non-leaf proof. We let this proof have
level 2 (we can use any level greater than 1). Since the goal itself is existentially quantified, we must
supply a witness. In this case, the witness is the classic diagonal set, which we callT.

〈1〉1. assume new S,
new f ∈ [S→ subset S]

prove ∃A ∈ subset S : ∀x ∈ S : f [x] , A
〈2〉1. define T , {z∈ S : z< f [z]}
〈2〉2.∀x ∈ S : f [x] , T
〈2〉3. qed by 〈2〉2

Because definitions made within a proof are usable by default, the definition ofT is usable in the proofs
of 〈2〉2 and〈2〉3. Once again, the proof of theqed step is automatically verified, so all that remains is to
prove〈2〉2. (Thedefine step requires no proof.)

The system acceptsobvious as the proof of〈2〉2 because the only difficulty in the proof of〈1〉1 is
finding the witness. However, suppose we want to add another level of proof for the benefit of a human
reader. The universal quantification is proved as above, by introducing a fresh constant:

4

A TLA+ Proof System Chaudhuri, Doligez, Lamport, and Merz

〈2〉2.∀x ∈ S : f [x] , T
〈3〉1. assume new x ∈ S prove f [x] , T
〈3〉2. qed by 〈3〉1

Naturally, theqed step is verified. Although the system acceptsobvious as the proof of〈3〉1 (remember
that it could verify〈2〉2 by itself), we can provide more detail with yet another level of proof. We write
this proof the way it would seem natural to a person—by breaking it into two cases:

〈3〉1. assume new x ∈ S prove f [x] , T
〈4〉1. case x ∈ T
〈4〉2. case x < T
〈4〉3. qed by 〈4〉1, 〈4〉2

The (omitted) proof of thecase statement〈4〉1 has as its goalf [x] , T and has the additional usable fact
x∈ T in its context.

We continue refining the proof in this way, stopping with anobvious or by proof when a goal is obvi-
ous enough for the back-end prover or for a human reader, depending on who the proof is being written
for. A by statement can guide the prover or the human reader by listinghelpful obvious consequences of
known facts. For example, the proof of〈4〉1 might beby x < f [x]. The proof is now finished: it contains
no omitted sub-proofs. For reference, the complete text of the proof is given in Appendix B.

Our experience writing hand proofs makes us expect that proofs of systems could be ten or more
levels deep, with the first several levels dictated by the structure of the property to be proved. Our method
of numbering steps makes such proofs manageable, and we are not aware of any good alternative.

This example illustrates how the proof language supports the hierarchical, non-linear, and incremen-
tal development of proofs. The proof writer can work on the most problematic unproved steps first,
leaving the easier ones for later. Finding that a step cannotbe proved (for example, because it is invalid)
may require changing other steps, making proofs of those other steps wasted effort. We intend to provide
an interface to the PM that will make it easy for the user to indicate which proofs should be checked and
will avoid unnecessarily rechecking proofs.

The example also shows how already-proved facts are generally not made usable, but are invoked
explicitly in by proofs. Global definitions are also hidden by default and theuser must explicitly make
them usable. This makes proofs easier to read by telling the reader what facts and definitions are being
used to prove each step. It also helps constrain the search space for an automated back-end prover,
leading to more efficient verification. Facts and definitions can be switched between usable and hidden
by use andhide steps, which have the same syntax asby. As noted above, omitting the label from a step’s
starting token (for example, writing〈4〉 instead of〈4〉2) makes the fact it asserts usable. This might be
done for compactness at the lowest levels of a proof.

The example also indicates how the current proof obligationat every step of the proof is clear, having
been written explicitly in a parent assertion. This clear structure comes at the cost of introducing many
levels of proof, which can be inconvenient. One way of avoiding these extra levels is by using an assertion
of the formsuffices A, which asserts that provingA proves the current goal, and makesA the new current
goal in subsequent steps. In our example proof, one level in the proof of step〈2〉2 can be eliminated by
writing the proof as:

〈2〉2.∀x ∈ S : f [x] , T
〈3〉1. suffices assume new x ∈ S prove f [x] , T
proof obvious

〈3〉2. case x ∈ T
〈3〉3. case x < T
〈3〉4. qed by 〈3〉2, 〈3〉3

5

A TLA+ Proof System Chaudhuri, Doligez, Lamport, and Merz

where the proofs of thecase steps are the same as before. Thesuffices statement changes the current goal
of the level-3 proof tof [x] , T after adding a declaration ofx and the usable factx∈ S to the context.
This way of proving a universally quantified formula is sufficiently common that TLA+2 provides atake
construct that allows thesuffices assertion〈3〉1 and itsobvious proof to be writtentake x ∈ S .

There is a similar construct,witness f ∈ S for proving an existentially quantified goal∃x ∈ S : e,
which changes the goal toe[x := f]. For implicational goalse⇒ f , the constructhave echanges the goal
to f . No other constructs in the TLA+2 proof language change the form of the current goal. We advise
that these constructs be used only at the lowest levels of theproof, since the new goal they create must
be derived instead of being available textually in a parent assertion. (As a check and an aid to the reader,
one can at any point insert a redundantsuffices step that simply asserts the current goal.)

The final TLA+2 proof construct ispick x : e, which introduces a new symbolx that satisfiese. The
goal of the proof of thispick step is∃x : e, and it changes the context of subsequent steps by adding a
declaration ofx and the facte. A more formal summary of the language appears in Appendix A.

The semantics of a TLA+2 proof is independent of any back-end prover. Different provers will have
different notions of what “follows easily”, so anobvious proof may be verified by one prover and not
another. In practice, many provers such as Isabelle must be directed to use decision procedures or spe-
cial tactics to prove some assertions. For this purpose, special standard modules will contain dummy
theorems for giving directives to the PM. Using such a theorem (with ause step orby proof) will cause
the PM not to use it as a fact, but instead to generate special directives for back-end provers. It could
even cause the PM to use a different back-end prover. (If possible, the dummy theorem willassert a
true fact that suggests the purpose of the directive.) For instance, using the theoremArithmeticmight be
interpreted as an instruction to use a decision procedure for integers. We hope that almost all uses of this
feature will leave the TLA+2 proof independent of the back-end provers. The proof will not have to be
changed if the PM is reconfigured to replace one decision procedure with a different one.

3 Proof Obligations

The PM generates a separateproof obligationfor each leaf proof and orchestrates the back-end provers
to verify these obligations. Each obligation is independent and can be proved individually. If the system
cannot verify an obligation within a reasonable amount of time, the PM reports a failure. The user
must then determine if it failed because it depends on hiddenfacts or definitions, or if the goal is too
complex and needs to be refined with another level of proof. (Hiding facts or definitions might also help
to constrain the search space of the back-end provers.)

When the back-end provers fail to find a proof, the user will know which obligation failed—that is,
she will be told the obligation’s usable context and goal andthe leaf proof from which it was generated.
We do not yet know if this will be sufficient in practice or if the PM will need to provide the user with
more information about why an obligation failed. For example, many SAT and SMT solvers produce
counterexamples for an unprovable formula that can provideuseful debugging information.

The PM will also mediate thecertificationof the TLA+2 theorem in a formal axiomatization of TLA+2

in a trusted logical framework, which in the current design is Isabelle/TLA+ (described in Section 4.2).
Although the PM is designed generically and can support other similar frameworks, for the rest of this
paper we will limit our attention to Isabelle/TLA+. Assuming that Isabelle/TLA+ is sound, once it has
certified a theorem we know that an error is possible only if the PM incorrectly translated the statement
of the theorem into Isabelle/TLA+.

After certifying the proof obligations generated for the leaf proofs, called theleaf obligations, cer-
tification of the theorem itself is achieved in two steps. First, the PM generates astructure lemma(and
its Isabelle/TLA+ proof) that states simply that the collection of leaf obligations implies the theorem.

6

A TLA+ Proof System Chaudhuri, Doligez, Lamport, and Merz

Then, the PM generates a proof of the theorem using the already-certified obligations and structure
lemma. If Isabelle accepts that proof, we are assured that the translated version of the theorem is true in
Isabelle/TLA+, regardless of any errors made by the PM.

Of course, we expect the PM to be correct. We now explain why itshould be by describing how
it generates the leaf obligations from the proof of a theorem. (Remember that we are considering only
TLA+2 formulas with no temporal operators.) Formally, a theorem in TLA+2 represents a closed proof
obligation in the TLA+2 meta-logic of the form(Γ
 e), whereΓ is a contextcontaining all the dec-
larations, definitions, facts (previous assumptions or theorems) and the assumptions introduced in the
theorem using anassume clause (if present), ande is a TLA+2 formula that is thegoal of the theorem.

A closed obligation(Γ
 e) is true if e is entailed byΓ in the formal semantics of TLA+ [11]. It is
said to beprovableif we have a proof ofe from Γ in Isabelle/TLA+. Because we assume Isabelle/TLA+

to be sound, we consider any provable obligation to be true. Aclaim is a sentence of the formπ : (Γ
 e),
whereπ is a TLA+2 proof. This claim represents the verification task thatπ is a proof of the proof
obligation(Γ
 e). The PM generates the leaf obligations of a claim by recursively traversing its proof,
using its structure to refine the obligation of the claim. Fora non-leaf proof, each proof step modifies
the context or the goal of its obligation to produce an obligation for its following step, and the finalqed
step proves the final form of the obligation. More precisely,every step defines atransformation, written
σ.τ : (Γ
 e) −→ (∆
 f), which states that theinput obligation(Γ
 e) is refinedto the obligation(∆
 f)
by the stepσ.τ. A step is said to bemeaningfulif the input obligation matches the form of the step. (An
example of a meaningless claim is one that involves atake step whose input obligation does not have a
universally quantified goal.) A claim is meaningful if everystep in it is meaningful.

The recursive generation of leaf obligations for meaningful claims and transformations is specified
using inference rules, with the interpretation that the leaf obligations generated for the claim or transfor-
mation at the conclusion of a rule is the union of those generated by the claims and transformations in
the premises of the rule. For example, the following rule is applied to generate the leaf obligations for a
claimπ : (Γ
 e) whenπ is a sequence ofn steps, forn> 1.

σ1. τ1 : (Γ
 e) −→ (∆
 f) σ2. τ2 · · · σn. τn : (∆
 f)
σ1. τ1 σ2. τ2 · · · σn. τn : (Γ
 e)

The leaf obligations of the claim in the conclusion are the union of those of the claim and transformation
in the premises. As an example of leaf obligations generatedby a transformation, here is a rule for the
stepσ.τ whereσ is the begin-step level token〈n〉 andτ is the propositionp with proof π.

π : (Γ, [¬e]
 p)
〈n〉 . p proof π : (Γ
 e) −→ (Γ, p
 e)

The rule concludes that the refinement in this step is to addp to the context of the obligation, assuming
that the sub-proofπ is able to establish it. The leaf obligations generated by this transformation are the
same as those of the claim in the premise of the rule. The goale is negated and added to the context
as a hidden fact (the square brackets indicate hiding). We can use¬e in a by proof or use statement,
and doing so can simplify subproofs. (Because we are using classical logic, it is sound to add¬e to the
known facts in this way.) The full set of such rules for every construct in the TLA+2 proof language is
given in appendix A.

A claim is said to becompleteit its proof contains no omitted subproofs. Starting from a complete
meaningful claim, the PM first generates its leaf obligations andfilters the hidden assumptions from
their contexts. (Filtration amounts to deleting hidden facts and replacing hidden operator definitions with
declarations.) The PM then asks the back-end provers to find proofs of the filtered obligations, which are
used to certify the obligations in Isabelle/TLA+. The PM next writes an Isar proof of the obligation of the

7

A TLA+ Proof System Chaudhuri, Doligez, Lamport, and Merz

complete meaningful claim that uses its certified filtered leaf obligations. The following meta-theorem
(proved in Appendix A.4) ensures that the PM can do this for all complete meaningful claims.

Theorem 1(Structural Soundness Theorem). If π : (Γ
 e) is a complete meaningful claim and every leaf
obligation it generates is provable after filtering hidden assumptions , then(Γ
 e) is provable.

Isabelle/TLA+ then uses this proof to certify the obligation of the claim. From the assumptions that the
Isabelle/TLA+ axiomatization is faithful to the semantics of TLA+2 and that the embedding of TLA+2 into
Isabelle/TLA+ is sound, it follows that the obligation is true.

4 Verifying Proof Obligations

Once the PM generates the leaf obligations, it must send themto the back-end provers. The one non-
obvious part of doing this is deciding whether definitions should be expanded by the PM or by the
prover. This is discussed in Section 4.1. We then describe the state of our two current back-end provers,
Isabelle/TLA+ and Zenon.

4.1 Expanding Definitions

Expansion of usable definitions cannot be left entirely to the back-end prover. The PM itself must do it
for two reasons:

• It must check that the current goal has the right form for atake, witness, or have step to be
meaningful, and this can require expanding definitions.
• The encoding of TLA+ in the back-end prover’s logic would be unsound if a modal operator like

prime (′) were encoded as a non-modal operator. Hence, encoding a definition like O(x) , x′ as an
ordinary definition in the prover’s logic would be unsound. All instances of such operators must
be removed by expanding their definitions before a leaf obligation is sent to the back-end prover.
Such operator definitions seldom occur in actual TLA+ specifications, but the PM must be able to
deal with them.

Another reason for the PM to handle definition expansion is that the Isabelle/TLA+ object logic does
not provide a direct encoding of definitions made within proofs. We plan to reduce the amount of
trusted code in the PM by lambda-lifting all usable definitions out of each leaf obligation and introducing
explicit operator definitions using Isabelle’s meta equality (≡). These definitions will be expanded before
interacting with Isabelle.

4.2 Isabelle/TLA+

The core of TLA+2 is being encoded as a new object logic Isabelle/TLA+ in the proof assistant Is-
abelle [14]. One of Isabelle’s distinctive features that similar proof assistants such as Coq [16] or
HOL [7, 8] lack is genericity with respect to different logics. The base system Isabelle/Pure provides
the trusted kernel and a framework in which the syntax and proof rules of object logics can be defined.
We have chosen to encode TLA+2 as a separate object logic rather than add it on top of one of the ex-
isting logics (such as ZF or HOL). This simplifies the translation and makes it easier to interpret the
error messages when Isabelle fails to prove obligations. A strongly typed logic such as HOL would have
been unsuitable for representing TLA+2, which is untyped. Isabelle/ZF might seem like a natural choice,
but differences between the way it and TLA+ define functions and tuples would have made the encod-
ing awkward and would have prevented us from reusing existing theories. Fortunately, the genericity
of Isabelle helped us not only to define the new logic, but alsoto instantiate the main automated proof

8

A TLA+ Proof System Chaudhuri, Doligez, Lamport, and Merz

methods, including rewriting, resolution- and tableau provers, and case-based and inductive reasoning.
Adding support for more specialized reasoning tools such asproof-producing SAT solvers [5] or SMT
solvers such as haRVey [3] will be similarly helped by existing generic interfaces.

The current encoding supports only a core subset of TLA+2, including propositional and first-order
logic, elementary set theory, functions, and the construction of natural numbers. Support for arithmetic,
strings, tuples, sequences, and records is now being added;support for the modal part of TLA+2 (vari-
ables, priming, and temporal logic) will be added later. Nevertheless, the existing fragment can already
be used to test the interaction of the PM with Isabelle and other back-end provers. As explained above,
Isabelle/TLA+ is used both as a back-end prover and to check proof scripts produced by other back-end
provers such as Zenon. If it turns out to be necessary, we willenable the user to invoke one of Isabelle’s
automated proof methods (such asauto or blast) by using a dummy theorem, as explained at the end
of Section 2.3. If the method succeeds, one again obtains an Isabelle theorem. Of course, Isabelle/TLA+

can also be used independently of the PM, which is helpful when debugging tactics.

4.3 Zenon

Zenon [2] is a tableau prover for classical first-order logicwith equality that was initially designed to
output formal proofs checkable by Coq [16]. Zenon outputs proofs in an automatically-checkable format
and it is easily extensible with new inference rules. One of its design goals is predictability in solving
simple problems, rather than high performance in solving some hard problems. These characteristics
make it well-suited to our needs.

We have extended Zenon to output Isar proof scripts for Isabelle/TLA+ theorems, and the PM uses
Zenon as a back-end prover, shipping the proofs it produces to Isabelle to certify the obligation. We have
also extended Zenon with direct support for the TLA+2 logic, including definitions and rules about sets
and functions. Adding support in the form of rules (instead of axioms) is necessary because some rules
are not expressible as first-order axioms, notably the rulesabout the set constructs:

e∈ S P[x := e]
e∈ {x ∈ S : P}

subsetOf
∃y ∈ S : e= d[x := y]

e∈ {d : x ∈ S}
setOfAll

Even for the rules that are expressible as first-order axioms, adding them as rules makes the proof search
procedure much more efficient in practice. The most important example is extensionality: when set
extensionality and function extensionality are added as axioms, they apply to every equality deduced by
the system, and pollute the search space with large numbers of irrelevant formulas. By adding them as
rules instead, we can use heuristics to apply them only in cases where they have some chance of being
useful.

Adding support for arithmetic, strings, tuples, sequences, and records will be done in parallel with the
corresponding work on Isabelle/TLA+, to ensure that Zenon will produce proof scripts that Isabelle/TLA+

will be able to check. Temporal logic will be added later. We also plan to interface Zenon with Isabelle,
so it can be called by a special Isabelle tactic the same way other tools are. This will simplify the PM by
giving it a uniform interface to the back-end provers. It will also allow using Zenon as an Isabelle tactic
independently of TLA+.

5 Conclusions and Future Work

We have presented a hierarchically structured proof language for TLA+. It has several important features
that help in managing the complexity of proofs. The hierarchical structure means that changes made
at any level of a proof are contained inside that level, whichhelps construct and maintain proofs. Leaf

9

A TLA+ Proof System Chaudhuri, Doligez, Lamport, and Merz

proofs can be omitted and the resulting incomplete proof canbe checked. This allows different parts
of the proof to be written separately, in a non-linear fashion. The more traditional linear proof style, in
which steps that have not yet been proved can be used only if explicitly added as hypotheses, encourages
proofs that use many separate lemmas. Such proofs lack the coherent structure of a single hierarchical
proof.

The proof language lets the user freely and repeatedly make facts and definitions usable or hidden.
Explicitly stating what is being used to prove each step makes the proof easier for a human to understand.
It also aids a back-end prover by limiting its search for a proof to ones that use only necessary facts.

There are other declarative proof languages that are similar to TLA+2. Isar [17] is one such language,
but it has significant differences that encourage a different style of proof development. For example, it
provides anaccumulatorfacility to avoid explicit references to proof steps. This is fine for short proofs,
but in our experience does not work well for long proofs that are typical of algorithm verification that
TLA+2 targets. Moreover, because Isabelle is designed for interactive use, the effects of the Isar proof
commands are not always easily predictable, and this encourages a linear rather than hierarchical proof
development style. The Focal Proof Language [1] is essentially a subset of the TLA+2 proof language.
Our experience with hierarchical proofs in Focal provides additional confidence in the attractiveness of
our approach. We know of no declarative proof language that has as flexible a method of using and
hiding facts and definitions as that of TLA+2.

The PM transforms a proof into a collection of proof obligations to be verified by a back-end prover.
Its current version handles proofs of theorems in the non-temporal fragment of TLA+ that do not involve
module instantiation (importing of modules with substitution). Even with this limitation, the system
can be useful for many engineering applications. We are therefore concentrating on making the PM
and its back-end provers handle this fragment of TLA+ effectively before extending them to the complete
language. The major work that remains to be done on this is to complete the Zenon and Isabelle inference
rules for reasoning about the built-in constant operators of TLA+. There are also a few non-temporal
aspects of the TLA+2 language that the PM does not yet handle, such as subexpression naming. We
also expect to extend the PM to support additional back-end provers, including decision procedures for
arithmetic and for propositional temporal logic.

We do not anticipate that any major changes will be needed to the TLA+2 proof language. We do
expect some minor tuning as we get more experience using it. For example, we are not sure whether
local definitions should be usable by default. A graphical user interface is being planned for the TLA+

tools, including the PM. It will support the non-linear development of proofs that the language and the
proof system allow.

References

[1] P. Ayrault, M. Carlier, D. Delahaye, C. Dubois, D. Doligez, L. Habib, T. Hardin, M. Jaume, C. Morisset,
F. Pessaux, R. Rioboo, and P. Weis. Secure software within Focal. In Computer& Electronics Security
Applications Rendez-vous, December 2008.

[2] Richard Bonichon, David Delahaye, and Damien Doligez. Zenon : An extensible automated theorem prover
producing checkable proofs. In N. Dershowitz and A. Voronkov, editors,Proc. 14th LPAR, pages 151–165,
2007.

[3] David Déharbe, Pascal Fontaine, Silvio Ranise, and Christophe Ringeissen. Decision procedures for the
formal analysis of software. In K. Barkaoui, A. Cavalcanti,and A. Cerone, editors,Intl. Coll. Theoretical
Aspects of Computing (ICTAC 2007), volume 4281 ofLecture Notes in Computer Science, pages 366–370,
Tunis, Tunisia, 2007. Springer. See alsohttp://harvey.loria.fr/.

10

http://harvey.loria.fr/

A TLA+ Proof System Chaudhuri, Doligez, Lamport, and Merz

[4] Urban Engberg, Peter Grønning, and Leslie Lamport. Mechanical verification of concurrent systems with
TLA. In G. v. Bochmann and D. K. Probst, editors,Proc. 4th CAV, volume 663 ofLecture Notes in Computer
Science, pages 44–55. Springer-Verlag, June 1992.

[5] Pascal Fontaine, Jean-Yves Marion, Stephan Merz, Leonor Prensa Nieto, and Alwen Tiu. Expressiveness
+ automation+ soundness: Towards combining SMT solvers and interactive proof assistants. In Holger
Hermanns and Jens Palsberg, editors,Proc. 12th TACAS, volume 3920 ofLecture Notes in Computer Science,
pages 167–181, Vienna, Austria, 2006. Springer Verlag.

[6] Eli Gafni and Leslie Lamport. Disk Paxos.Distributed Computing, 16(1):1–20, 2003.

[7] Michael J. C. Gordon and Thomas F. Melham.Introduction to HOL: a theorem proving environment for
higher-order logic. Cambridge University Press, 1993.

[8] John Harrison. The HOL Light theorem prover.
http://www.cl.cam.ac.uk/ j̃rh13/hol-light/index.html.

[9] Leslie Lamport. How to write a proof.American Mathematical Monthly, 102(7):600–608, August 1993.

[10] Leslie Lamport. The temporal logic of actions.ACM Transactions on Programming Languages and Systems,
16(3):872–923, May 1994.

[11] Leslie Lamport.Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers.
Addison-Wesley, 2003.

[12] Leslie Lamport. TLA+2: A preliminary guide. Draft manuscript, April 2008.
http://research.microsoft.com/users/lamport/tla/tla2-guide.pdf.

[13] A. C. Leisenring.Mathematical Logic and Hilbert’sε-Symbol. Gordon and Breach, New York, 1969.

[14] Lawrence C. Paulson.Isabelle: A Generic Theorem Prover, volume 828 ofLecture Notes in Computer
Science. Springer, Berlin, Germany, 1994.

[15] Piotr Rudnicki. An overview of the mizar project. InWorkshop on Types for Proofs and Programs, Gothen-
burg, Sweden, 1992. Bastad.http://www.mizar.org.

[16] The Coq Development Team (Project TypiCal). The Coq proof assistant reference manual, 2008.
http://coq.inria.fr/V8.1pl3/refman/index.html.

[17] Makarius Wenzel. The Isabelle/Isar reference manual, June 2008.
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle/doc/isar-ref.pdf.

A Details of the PM

We shall now give a somewhat more formal specification of the PM and prove the key Structural Sound-
ness Theorem 1. We begin with a quick summary of the abstract syntax of TLA+2 proofs, ignoring the
stylistic aspects of their concrete representation. (See [12] for a more detailed presentation of the proof
language.)

Definition 2 (TLA+2 Proof Language). TLA+2 proofs, non-leaf proofs, proof stepsandbegin-steptokens
have the following syntax, where n ranges over natural numbers, l over labels, e over expressions,Φ over
lists of expressions, o over operator definitions,Ψ over sets of operator names,~β over lists of binders
(i.e., constructs of the form x and x∈ e used to build quantified expressions), andα over expressions or
assume . . .prove forms.

(Proofs) π F obvious | omitted | by Φ defs Ψ | Π

(Non-leaf proofs) Π F σ. qed proof π

| σ. τ Π

(Proof steps) τ F use Φ defs Ψ | hide Φ defs Ψ | define o
| have e | take ~β | witness Φ
| α proof π | suffices α proof π | pick ~β : e proof π

(Begin-step tokens)σ F 〈n〉 | 〈n〉 l

11

http://www.cl.cam.ac.uk/~jrh13/hol-light/index.html
http://research.microsoft.com/users/lamport/tla/tla2-guide.pdf
http://www.mizar.org
http://coq.inria.fr/V8.1pl3/refman/index.html
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle/doc/isar-ref.pdf

A TLA+ Proof System Chaudhuri, Doligez, Lamport, and Merz

A proof that is not a non-leaf proof is called aleaf proof. The level numbers of a non-leaf proof must all
be the same, and those in the subproof of a step (that is, theπ in α proof π, etc.) must be strictly greater
than that of the step itself.

A.1 The Meta-Language

The PM uses proofs in the TLA+2 proof language (Definition 2) to manipulate constructs in the meta-
language of TLA+2. This meta-language naturally has no representation in TLA+2 itself; we define its
syntax formally as follows.

Definition 3 (Meta-Language). The TLA+2 meta-language consists ofobligations, assumptionsand de-
finableswith the following syntax, where e ranges over TLA+2 expressions, x and o over TLA+2 identifiers,
and~x over lists of TLA+2 identifiers.

(Obligations) φ F (h1, . . . ,hn
 e) (n≥ 0)
(Assumptions) h F new x | o, δ | φ |

[

o, δ
]

|
[

φ
]

(Definables) δ F φ | lambda ~x : e

The expression after
 in an obligation is called itsgoal. An assumption written inside square brackets
[] is said to behidden; otherwise it isusable. For any assumption h, we writeh (read: hmade usable) to
stand for h with its brackets removed if it is a hidden assumption, and to stand for h if it is not hidden. A
list of assumptions is called acontext, with the empty context written asq; we letΓ, ∆ andΩ range over
contexts, withΓ,∆ standing for the context that is the concatenation ofΓ and∆. The contextΓ is Γ with
all its hidden assumptions made usable. The obligation(q
 e) is written simply as e. The assumptions
new x, o, δ and

[

o, δ
]

bind the identifiers x and o respectively. We write x∈ Γ if x is bound inΓ and
x< Γ if x is not bound inΓ. The contextΓ,h is considered syntactically well-formed iff h does not bind
an identifier already bound inΓ.

An obligation is a statement that its goal follows from the assumptions in its context. TLA+2 already de-
fines such a statement usingassume . . .prove, but the contexts in such statements have no hidden assump-
tions or definitions. (To simplify the presentation, we givethe semantics of a slightly enhanced proof
language where proof steps are allowed to mention obligations instead of just TLA+2

assume . . .prove
statements.) We define an embedding of obligations into Isabelle/TLA+ propositions, which we take as
the ultimate primitives of the TLA+2 meta-logic.

Definition 4. The Isabelle/TLA+ embedding(−)Isa of obligations, contexts and definables is as follows:

(Γ
 e)Isa = (Γ)Isa e
(

lambda ~x : e
)

Isa = λ~x. e

(q)Isa =

(Γ,newx)Isa = (Γ)Isa
∧

x.

(Γ,o, δ)Isa = (Γ)Isa
∧

o.
(

o≡ (δ)Isa
)

=⇒

(Γ,φ)Isa = (Γ)Isa
(

(φ)Isa
)

=⇒

For example,(newP, [(new x
 P(x))]
 ∀x : P(x))Isa=
∧

P. (
∧

x. P(x)) =⇒∀x : P(x). Note that usable
and hidden assumptions are treated identically for the provability of an obligation.

The embedding of ordinary TLA+2 expressions is the identity because Isabelle/TLA+ contains TLA+2

expressions as part of its object syntax. Thus, we do not haveto trust the embedding of ordinary TLA+2

expressions, just that of the obligation language. In practice, some aspects of TLA+2 expressions, such
as the indentation-sensitive conjunction and disjunctionlists, are sent by the PM to Isabelle using an
indentation-insensitive encoding.While Isabelle/TLA+ can implicitly generalize over the free identifiers
in a lemma, we shall be explicit about binding and consider obligations provable only if they are closed.

12

A TLA+ Proof System Chaudhuri, Doligez, Lamport, and Merz

Definition 5 (Well-Formed Obligations). The obligation(Γ
 e) is said to bewell-formediff it is closed
and(Γ
 e)Isa is a well-typed proposition of Isabelle/TLA+.

Definition 6 (Provability). The obligation(Γ
 e) is said to beprovableiff it is well-formed and(Γ
 e)Isa

is certified by the Isabelle kernel to follow from the axioms of the Isabelle/TLA+ object logic.

We trust Isabelle/TLA+ to be sound with respect to the semantics of TLA+2, and therefore provability to
imply truth. Formally, we work under the followingtrust axiom.

Axiom 7 (Trust). If φ is provable, then it is true.

We state a number of useful facts about obligations (which are all theorems in Isabelle/TLA+), omitting
their trivial proofs. The last one (Fact 13) is true because TLA+ is based on classical logic.

Fact 8 (Definition). If (Γ,newo,∆
 e) is provable, then(Γ,o, δ,∆
 e) is provable if it is well-formed.

Fact 9 (Weakening). If (Γ,∆
 e) is provable, then(Γ,h,∆
 e) is provable if it is well-formed.

Fact 10(Expansion). If (Γ,o, δ,∆
 e) is provable, then(Γ,o, δ,∆[o := δ]
 e[o := δ]) is provable.

Fact 11 (Strengthening). If (Γ,newo,∆
 e) or (Γ,o, δ,∆
 e) is provable and o is not free in(∆
 e),
then(Γ,∆
 e) is provable.

Fact 12(Cut). If (Γ,∆
 e) is provable and(Γ, (∆
 e) ,Ω
 f) is provable, then(Γ,Ω
 f) is provable.

Fact 13. If (Γ,¬e,∆
 e) is provable, then(Γ,∆
 e) is provable.

Theuse/hide defs steps change the visibility of definitions in a context (Definition 14 below). Note that
changing the visibility of a definition does not affect the provability of an obligation because the Isabelle
embedding (Definition 4) makes all hidden definitions usable.

Definition 14. If Γ is a context andΨ a set of operator names, then:

1. Γ with Ψmade usable, writtenΓusingΨ, is constructed fromΓ by replacing all assumptions of the
form

[

o, δ
]

in Γ with o, δ for every o∈ Ψ.
2. Γ with Ψ made hidden, written ΓhidingΨ, is constructed fromΓ by replacing all assumptions of

the form o, δ in Γ with
[

o, δ
]

for every o∈ Ψ.

A sequence of binders~β in the TLA+2 expressions∀~β : e or ∃~β : ecan be reflected as assumptions.

Definition 15 (Binding Reflection). If ~β is a list of binders with each element of the form x or x∈ e, then
thereflectionof ~β as assumptions, written

∥

∥

∥

~β
∥

∥

∥, is given inductively as follows.

∥

∥

∥

q

∥

∥

∥ = q

∥

∥

∥

~β, x
∥

∥

∥ =
∥

∥

∥

~β
∥

∥

∥,new x
∥

∥

∥

~β, x∈ e
∥

∥

∥ =
∥

∥

∥

~β
∥

∥

∥,new x, x∈ e

A.2 Interpreting Proofs

Let us recall some definitions from section 3.

Definition 16 (Claims and Transformations). A claim is a judgement of the formπ : (Γ
 e) whereπ is a
TLA+2 proof. A transformationis a judgement of the formσ.τ : (Γ
 e) −→ (∆
 f) whereσ is a begin-
step token andτ a proof step. A claim (respectively, transformation) is said to becompleteif its proof
(respectively, proof step) does not contain any occurrenceof the leaf proofomitted.

The PM generates leaf obligations for a claim using two mutually recursive procedures,checkingand
transformation, specified below using the formalism of aprimitive derivation.

13

A TLA+ Proof System Chaudhuri, Doligez, Lamport, and Merz

Definition 17. A primitive derivationis a derivation constructed using inferences of the form

D1 · · · Dn

E
(n≥ 0)

where E is either a claim or a transformation, andD1, . . . ,Dn are primitive derivations or obligations.
An obligation at the leaf of a primitive derivation is calleda leaf obligation.

Definition 18 (Checking and Transformation). The primitive derivations of a claim or transformation
are constructed using the followingcheckingand transformationrules.

1. Checkingrules

(Γ
 e)
obvious : (Γ
 e)

obvious
omitted : (Γ
 e)

omitted

〈0〉 . use Φ defs Ψ : (Γ
 e) −→ (∆
 f) (∆
 f)
by Φ defs Ψ : (Γ
 e)

by

π : (Γ
 e)
σ. qed proof π : (Γ
 e)

qed
σ.τ : (Γ
 e) −→ (∆
 f) Π : (∆
 f)

σ.τ Π : (Γ
 e)
non-qed

2. Transformation

σ. use Φ : (ΓusingΨ
 e) −→ (∆
 f)
σ. use Φ defs Ψ : (Γ
 e) −→ (∆
 f)

use defs

σ. hide Φ : (Γ
 e) −→ (∆
 f)
σ. hide Φ defs Ψ : (Γ
 e) −→ (∆hidingΨ
 f)

hide defs

σ. define o, δ : (Γ
 e) −→
(

Γ,
[

o, δ
]

 e
) define (o< Γ)

σ. use q: (Γ
 e) −→ (Γ
 e)
use0

σ. hide q: (Γ
 e) −→ (Γ
 e)
hide0

σ. use Φ : (Γ
 e) −→ (∆
 f) (∆,Γ0
 e0)
σ. use Φ, (Γ0
 e0) : (Γ
 e) −→ (∆, (Γ0
 e0)
 f)

use1

σ. hide Φ :
(

Γ0,
[

φ
]

,Γ1
 e
)

−→ (∆
 f)
σ. hide Φ,φ : (Γ0,φ,Γ1
 e) −→ (∆
 f)

hide1

σ. take q: (Γ
 e) −→ (Γ
 e)
take0

σ. witness q: (Γ
 e) −→ (Γ
 e)
witness0

σ. take ~β : (Γ,newu
 e[x := u]) −→ (∆
 f)

σ. take u,~β : (Γ
 ∀x : e) −→ (∆
 f)
take1

(Γ
 S ⊆ T) σ. take ~β : (Γ,newu,u∈ T
 e[x := u]) −→ (∆
 f)

σ. take u ∈ T,~β : (Γ
 ∀x ∈ S : e) −→ (∆
 f)
take2

σ. witness Ω : (Γ
 e[x := w]) −→ (∆
 f)
σ. witness w,Ω : (Γ
 ∃x : e) −→ (∆
 f)

witness1

(Γ
 T ⊆ S) (Γ
 w ∈ T) σ. witness Ω : (Γ,w ∈ T
 e[x := w]) −→ (∆
 f)
σ. witness w ∈ T,Ω : (Γ
 ∃x ∈ S : e) −→ (∆
 f)

witness2

(Γ,e
 g)
σ. have g : (Γ
 e⇒ f) −→ (Γ,g
 f)

have

π : (Γ, [¬e] ,∆
 f)
〈n〉 . (∆
 f) proof π : (Γ
 e) −→ (Γ, (∆
 f)
 e)

assert1

14

A TLA+ Proof System Chaudhuri, Doligez, Lamport, and Merz

π : (Γ, 〈n〉 l , (∆
 f) , [¬e] ,∆
 f)
〈n〉 l. (∆
 f) proof π : (Γ
 e) −→ (Γ, 〈n〉 l , (∆
 f) , [〈n〉 l]
 e)

assert2

σ. (g
 e) proof π : (Γ
 e) −→ (∆
 f)
σ. case g proof π : (Γ
 e) −→ (∆
 f)

case

π : (Γ, (∆
 f)
 e)
〈n〉 . suffices (∆
 f) proof π : (Γ
 e) −→ (Γ, [¬e] ,∆
 f)

suffices1

π : (Γ, 〈n〉 l , (∆
 f) , [〈n〉 l]
 e)
〈n〉 l. suffices (∆
 f) proof π : (Γ
 e) −→ (Γ, 〈n〉 l , (∆
 f) , [¬e] ,∆
 f)

suffices2

π :
(

Γ
 ∃~β : p
)

σ. pick ~β : p proof π : (Γ
 e) −→
(

Γ,
∥

∥

∥

~β
∥

∥

∥, p
 e
) pick

The inference rules in the above definition are deterministic: the conclusion of each rule uniquely de-
termines the premises. However, the rules are partial; for example, there is no rule that concludes a
transformation of the formσ.take x ∈ S : (Γ
 B∧C) −→ (∆
 f).

Definition 19. A claim or a transformation is said to bemeaningfulif it has a primitive derivation.

Definition 20 (Generating Leaf Obligations). A meaningful claim or transformation is said togenerate
the leaf obligations of its primitive derivation.

In the rest of this appendix we limit our attention to complete meaningful claims and transformations.

A.3 Correctness

If the leaf obligations generated by a complete meaningful claim are provable, then the obligation in the
claim itself ought to be provable. In this section we prove this theorem by analysis of the checking and
transformation rules.

Definition 21 (Provability of Claims and Transformation).
1. The claimπ : (Γ
 e) is provableiff it is complete and meaningful and the leaf obligations it gener-

ates are all provable.
2. The transformationσ.τ : (Γ
 e) −→ (∆
 f) is provableiff it is complete and meaningful and the

leaf obligations it generates are all provable.

Theorem 22(Correctness).
(1) If π : (Γ
 e) is provable, then(Γ
 e) is provable.
(2) If σ.τ : (Γ
 e) −→ (∆
 f) is provable and(∆
 f) is provable, then(Γ
 e) is provable.

Proof. LetD be the primitive derivation for the claim in (1) and letE be the primitive derivation for the trans-
formation in (2). The proof will be by lexicographic induction on the structures ofD andE, with a provable
transformation allowed to justify a provable claim.

〈1〉1. If π : (Γ
 e) is provable, then(Γ
 e) is provable.

〈2〉1. Caseπ is obvious, i.e.,D =
(Γ
 e)

obvious : (Γ
 e)
obvious. Obvious

〈2〉2. Caseπ is omitted is impossible becauseπ : (Γ
 e) is complete.

〈2〉3. Caseπ is by Φ defs Ψ, i.e.,

D =

E0
〈0〉 . use Φ defs Ψ : (Γ
 e) −→ (∆
 f) (∆
 f)

by Φ defs Ψ : (Γ
 e)
by.

15

A TLA+ Proof System Chaudhuri, Doligez, Lamport, and Merz

〈3〉1. (∆
 f) is provable ByDefinition 21.
〈3〉2. Qed By 〈3〉1, i.h. (inductive hypothesis) forE0.

〈2〉4. Caseπ isσ.qed proof π0, i.e.,D =

D0
π0 : (Γ
 e)

σ. qed proof π0 : (Γ
 e)
qed. By i.h. forD0.

〈2〉5. Caseπ isσ.τ Π, i.e.,

D =

E0
σ.τ : (Γ
 e) −→ (∆
 f)

D0
Π : (∆
 f)

σ.τ Π : (Γ
 e)
non-qed.

〈3〉1. (∆
 f) is provable By i.h. forD0.
〈3〉3. Qed By 〈3〉1, i.h. forE0.

〈2〉6. Qed By 〈2〉1, . . . ,〈2〉5.

〈1〉2. If σ.τ : (Γ
 e) −→ (∆
 f) is provable and(∆
 f) is provable, then(Γ
 e) is provable.

〈2〉1. Caseτ is use Φ defs Ψ, i.e.,

E =

E0
σ. use Φ : (ΓusingΨ
 e) −→ (∆
 f)
σ. use Φ defs Ψ : (Γ
 e) −→ (∆
 f)

use defs.

〈3〉1. (ΓusingΨ
 e) is provable By i.h. forE0.
〈3〉2. Qed By 〈3〉1, Definition 14.

〈2〉2. Caseτ is hide Φ defs Ψ, i.e.,

E =

E0
σ. hide Φ : (Γ
 e) −→ (∆
 f)

σ. hide Φ defs Ψ : (Γ
 e) −→ (∆hidingΨ
 f)
hide defs.

〈3〉1. (∆
 f) is provable Byprovability of (∆hidingΨ
 f) and Definition 14.
〈3〉2. Qed By 〈3〉1, i.h. forE0.

〈2〉3. Caseτ is define o, δ with o < Γ, i.e.,

E =
σ. define o, δ : (Γ
 e) −→

(

Γ,
[

o, δ
]

 e
) define.

〈3〉1. o is not free ine By o< Γ and closedness of(Γ
 e).
〈3〉2. Qed By 〈3〉1, strengthening (Fact 11).

〈2〉4. Caseτ is use q, i.e., E =
σ. use q: (Γ
 e) −→ (Γ
 e)

use0. Obvious

〈2〉5. Caseτ is hide q, i.e., E =
σ. hide q: (Γ
 e) −→ (Γ
 e)

hide0. Obvious

〈2〉6. Caseτ is use Φ,φ, i.e.,

E =

E0
σ. use Φ : (Γ
 e) −→ (∆0
 f) (∆0,Γ0
 e0)
σ. use Φ, (Γ0
 e0) : (Γ
 e) −→ (∆0, (Γ0
 e0)
 f)

use1

〈3〉1. (∆0,Γ0
 e0) is provable ByDefinition 21.
〈3〉2. (∆0,Γ0
 e0) is provable By 〈3〉1, Definition 4.
〈3〉3. (∆0
 f) is provable Byprovability of (∆0, (Γ0
 e0)
 f), 〈3〉2, cut (Fact 12).
〈3〉4. Qed By 〈3〉3, i.h. forE0

〈2〉7. Caseτ is hide Φ,φ, i.e.,

E =

E0
σ. hide Φ :

(

Γ0,
[

φ
]

,Γ1
 e
)

−→ (∆
 f)
σ. hide Φ,φ : (Γ0,φ,Γ1
 e) −→ (∆
 f)

hide1.

16

A TLA+ Proof System Chaudhuri, Doligez, Lamport, and Merz

〈3〉1.
(

Γ0,
[

φ
]

,Γ1
 e
)

is provable By provability of (∆
 f), i.h. forE0.
〈3〉2. Qed By〈3〉1,

(

Γ0,
[

φ
]

,Γ1
 e
)

Isa= (Γ0,φ,Γ1
 e)Isa (Definition 4).

〈2〉8. Caseτ is take q, i.e., E =
σ. take q: (Γ
 e) −→ (Γ
 e)

take0. Obvious

〈2〉9. Caseτ iswitness q, i.e., E =
σ. witness q: (Γ
 e) −→ (Γ
 e)

witness0. Obvious

〈2〉10. Caseτ is take u,~β, i.e.,

E =

E0

σ. take ~β : (Γ,newu
 e[x := u]) −→ (∆
 f)

σ. take u,~β : (Γ
 ∀x : e) −→ (∆
 f)
take1.

〈3〉1. (Γ,newu
 e[x := u]) is provable By i.h. forE0.
〈3〉2. Qed By 〈3〉1 and predicate logic.

〈2〉11. Caseτ isσ. take u ∈ T, i.e.,

E =
(Γ
 S ⊆ T)

E0

σ. take ~β : (Γ,newu,u∈ T
 e[x := u]) −→ (∆
 f)

σ. take u ∈ T,~β : (Γ
 ∀x ∈ S : e) −→ (∆
 f)
take2.

〈3〉1. (Γ,newu,u∈ T
 e[x := u]) is provable By i.h onE0.
〈3〉2. (Γ,newu,u∈ S
 u ∈ T) is provable

〈4〉1. (Γ,newu
 S ⊆ T) is provable ByDefinition 21, weakening (Fact 9).
〈4〉2. Qed By 〈4〉1, Definition of⊆.

〈3〉3. (Γ,newu,u∈ S
 e[x := u]) is provable By 〈3〉1, 〈3〉2, cut (Fact 12).
〈3〉4. Qed By 〈3〉3 and predicate logic.

〈2〉12. Caseτ iswitness w,Ω, i.e.,

E =

E0
σ. witness Ω : (Γ
 e[x := w]) −→ (∆
 f)
σ. witness w,Ω : (Γ
 ∃x : e) −→ (∆
 f)

witness1.

〈3〉1. (Γ
 e[x := w]) is provable By i.h. forE0.
〈3〉2. Qed By 〈3〉1.

〈2〉13. Caseτ iswitness w ∈ T,Ω and:

E =
(Γ
 T ⊆ S) (Γ
 w ∈ T)

E0
σ. witness Ω : (Γ,w ∈ T
 e[x := w]) −→ (∆
 f)

σ. witness w ∈ T,Ω : (Γ
 ∃x ∈ S : e) −→ (∆
 f)
witness2.

〈3〉1. (Γ,w ∈ T
 e[x := w]) is provable By i.h. forE0.
〈3〉2. (Γ
 w ∈ T) is provable ByDefinition 21.
〈3〉3. (Γ
 e[x := w]) is provable By 〈3〉1, 〈3〉2, cut (Fact 12).
〈3〉4. (Γ
 w ∈ S) is provable

〈4〉1. (Γ,w ∈ T
 w ∈ S) is provable By Definition 21, Definition of⊆.
〈4〉2. Qed By 〈4〉1, 〈3〉2, cut (Fact 12).

〈3〉5. Qed By 〈3〉3, 〈3〉4, and predicate logic.

〈2〉14. τ is have g, i.e.,

E =
(Γ,e
 g)

σ. have g : (Γ
 e⇒ f) −→ (Γ,g
 f)
have.

〈3〉1. (Γ,e,g
 f) is provable Byweakening (Fact 9).
〈3〉2. (Γ,e
 g) is provable ByDefinition 21.

17

A TLA+ Proof System Chaudhuri, Doligez, Lamport, and Merz

〈3〉3. (Γ,e
 f) is provable By 〈3〉1, 〈3〉2, cut (Fact 12).
〈3〉4. (Γ
 e⇒ f) is provable By 〈3〉3.

〈2〉15. σ.τ is 〈n〉 . (Ω
 g) proof π, i.e.,

E =

D0
π : (Γ, [¬e] ,Ω
 g)

〈n〉 . (Ω
 g) proof π : (Γ
 e) −→ (Γ, (Ω
 g)
 e)
assert1.

〈3〉1. (Γ, [¬e] , (Ω
 g)
 e) is provable Byweakening (Fact 9).
〈3〉2. (Γ, [¬e] ,Ω
 g) is provable By i.h. forD0.
〈3〉3. (Γ, [¬e]
 e) is provable By 〈3〉1, 〈3〉2, cut (Fact 12).
〈3〉4. Qed By 〈3〉3, Fact 13.

〈2〉16. Caseσ.τ is 〈n〉 l. (Ω
 g) proof π, i.e.,

E =

D0
π : (Γ, 〈n〉 l , (Ω
 g) , [¬e] ,Ω
 g)

〈n〉 l. (Ω
 g) proof π : (Γ
 e) −→ (Γ, 〈n〉 l , (Ω
 g) , [〈n〉 l]
 e)
assert2.

〈3〉1. (Γ, 〈n〉 l , (Ω
 g) , [¬e] , [〈n〉 l]
 e) is provable
Byprovability of (Γ, 〈n〉 l , (Ω
 g) , [〈n〉 l]
 e), weakening (Fact 9).

〈3〉2.
(

Γ, 〈n〉 l , (Ω
 g) , [¬e] ,
[

(Ω
 g)
]

 e
)

is provable By 〈3〉1, expansion (Fact 10).
〈3〉3. (Γ, 〈n〉 l , (Ω
 g) , [¬e] ,Ω
 g) is provable By i.h. forD0.
〈3〉4. (Γ, 〈n〉 l , (Ω
 g) , [¬e]
 e) is provable By 〈3〉2, 〈3〉3, cut (Fact 12).
〈3〉5. (Γ, [¬e]
 e) is provable By 〈3〉4, strengthening (Fact 11).
〈3〉6. Qed By 〈3〉5, Fact 13.

〈2〉17. τ is case g proof π, i.e.,

E =

E0
σ. (g
 e) proof π : (Γ
 e) −→ (∆
 f)
σ. case g proof π : (Γ
 e) −→ (∆
 f)

case.

By i.h. for E0.

〈2〉18. τ is 〈n〉 . suffices (Ω
 g) proof π, i.e.,

E =

D0
π : (Γ, (Ω
 g)
 e)

〈n〉 . suffices (∆
 f) proof π : (Γ
 e) −→ (Γ, [¬e] ,Ω
 g)
suffices1.

〈3〉1. (Γ, [¬e] , (Ω
 g)
 e) is provable By i.h. forD0, weakening (Fact 9).
〈3〉2. (Γ, [¬e]
 e) is provable Byprovability of (Γ, [¬e] ,Ω
 g), 〈3〉1, cut (Fact 12).
〈3〉3. Qed By 〈3〉2, Fact 13.

〈2〉19. σ.τ is 〈n〉 l. suffices (Ω
 g) proof π, i.e.,

E =

D0
π : (Γ, 〈n〉 l , (Ω
 g) , [〈n〉 l]
 e)

〈n〉 l. suffices (Ω
 g) proof π : (Γ
 e) −→ (Γ, 〈n〉 l , (Ω
 g) , [¬e] ,Ω
 g)
suffices2.

〈3〉1. (Γ, 〈n〉 l , (Ω
 g) , [¬e] , [〈n〉 l]
 e) is provable By i.h. forD0, weakening (Fact 9).
〈3〉2.

(

Γ, 〈n〉 l , (Ω
 g) , [¬e] ,
[

(Ω
 g)
]

 e
)

is provable By 〈3〉1, expansion (Fact 10).
〈3〉3. (Γ, 〈n〉 l , (Ω
 g) , [¬e]
 e) is provable

By 〈3〉2, provability of(Γ, 〈n〉 l , (Ω
 g) , [¬e] ,Ω
 g), cut (Fact 12).
〈3〉4. (Γ, [¬e]
 e) is provable By 〈3〉3, strengthening (Fact 11).
〈3〉5. Qed By 〈3〉4, Fact 13.

〈2〉20. Caseτ is pick ~β : p proof π, i.e.,

E =

D0

π :
(

Γ
 ∃~β : p
)

σ. pick ~β : p proof π : (Γ
 e) −→
(

Γ,
∥

∥

∥

~β
∥

∥

∥, p
 e
) pick.

18

A TLA+ Proof System Chaudhuri, Doligez, Lamport, and Merz

〈3〉1.
(

Γ,∃~β : p
 e
)

is provable Byprovability of
(

Γ,
∥

∥

∥

~β
∥

∥

∥, p
 e
)

, predicate logic.

〈3〉2.
(

Γ
 ∃~β : p
)

is provable By i.h. forD0.
〈3〉3. Qed By 〈3〉1, 〈3〉2, cut (Fact 12).

〈2〉21. Qed By 〈2〉1, . . . ,〈2〉20

〈1〉3. Qed By 〈1〉1, 〈1〉2.

�

A.4 Constrained Search

The correctness theorem (22) establishes an implication from the leaf obligations generated by a com-
plete meaningful claim to the obligation of the claim. It is always true, regardless of the provability of
any individual leaf obligation. While changing the visibility of assumptions in an obligation does not
change its provability, a back-end prover may fail to prove it if important assumptions are hidden. As
already mentioned in Section 3, the PM removes these hidden assumptions before sending a leaf obli-
gation to a back-end prover. Therefore, in order to establish the Structural Soundness Theorem (1), we
must prove a property about the result of this removal.

Definition 23 (Filtration). Thefiltered form of any obligationφ, written (φ)f , is obtained by deleting
all assumptions of the form

[

φ0
]

and replacing all assumptions of the form
[

o, δ
]

with newo anywhere
insideφ.

For example,
(

new x,
[

y, x
]

 x= y
)

f = (new x,newy
 x= y). We thus see that filtration can render a
true obligation false; however, if the filtered form of an obligation is true, then so is the obligation.

Lemma 24(Verification Lemma). If (φ)f is provable, thenφ is provable.

Proof Sketch.By induction on the structure of the obligationφ, with each case a straightforward conse-
quence of facts 8 and 9. �

Definition 25 (Verifiability). The obligationφ is said to beverifiableif (φ)f is provable.

We now prove the Structural Soundness Theorem (1).

Theorem 1. If π : φ is a complete meaningful claim and every leaf obligations itgenerates is verifiable,
thenφ is true.

Proof.
〈1〉1. For every leaf obligationφ0 generated byπ : φ, it must be thatφ0 is provable.

〈2〉1. Takeφ0 as a leaf obligation generated byπ : φ.
〈2〉2. (φ0)f is provable By assumption and Definition 25.
〈2〉3. Qed By 〈2〉2, Verification Lemma 24.

〈1〉2. φ is provable By 〈1〉1, Correctness Theorem 22.
〈1〉3. Qed By 〈1〉2, Trust Axiom 7.

�

19

A TLA+ Proof System Chaudhuri, Doligez, Lamport, and Merz

B A TLA+2 Proof of Cantor’s Theorem

The following is the complete TLA+2 proof of Cantor’s theorem referenced in Section 2.3.

theorem ∀S : ∀ f ∈ [S→ subset S] : ∃A ∈ subset S : ∀x ∈ S : f [x] , A
〈1〉1. assume new S,

new f ∈ [S→ subset S]
prove ∃A ∈ subset S : ∀x ∈ S : f [x] , A

〈2〉1. define T , {z∈ S : z< f [z]}
〈2〉2. ∀x ∈ S : f [x] , T
〈3〉1. assume new x ∈ S prove f [x] , T
〈4〉1. case x ∈ T obvious
〈4〉2. case x < T obvious
〈4〉3. qed by 〈4〉1, 〈4〉2
〈3〉2. qed by 〈3〉1
〈2〉3. qed by 〈2〉2
〈1〉2. qed by 〈1〉1

As an example, the leaf obligation generated (see Appendix A.3) for the proof of〈4〉1 is:
(

〈1〉1, (newS,new f , f ∈ [S→ subset S]
 ∃A ∈ subset S : ∀x ∈ S : f [x] , A),
newS,
new f , f ∈ [S→ subset S],
T , {z∈ S : z< f [z]},
[

¬ (∃A ∈ subset S : ∀x ∈ S : f [x] , A)
]

,
〈2〉2, ∀x ∈ S : f [x] , T,
[

¬ (∀x ∈ S : f [x] , T)
]

,
〈3〉1, (new x, x ∈ S
 f [x] , T),
new x, x ∈ S,
[

¬ (f [x] , T)
]

,
〈4〉1, (x ∈ T
 f [x] , T),
x ∈ T

 f [x] , T

)

.

Filtering its obligation (see Definition 23) and expanding all definitions gives:
(

newS,
new f , f ∈ [S→ subset S],
new x, x ∈ S,
x ∈ {z∈ S : z< f [z]}
 f [x] , {z∈ S : z< f [z]}

)

.

In Isabelle/TLA+, this is the following lemma:

lemma
∧

S.
∧

f . f ∈ [S→ subset S] =⇒
(

∧

x.
�

x ∈ S;

x ∈ {z∈ S : z< f [z]}
�

=⇒ f [x] , {z∈ S : z< f [z]}
)

20

	Introduction
	TLA+ and its Proof Language
	TLA
	TLA+
	The Proof Language

	Proof Obligations
	Verifying Proof Obligations
	Expanding Definitions
	Isabelle/TLA+
	Zenon

	Conclusions and Future Work
	Details of the PM
	The Meta-Language
	Interpreting Proofs
	Correctness
	Constrained Search

	A TLA+2 Proof of Cantor's Theorem

