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Abstract

We describe an extension to the TL#pecification language with constructs for writing proofs
and a proof environment, called the Proof Manager (PM), teckk those proofs. The language
and the PM support the incremental development and chedfihgerarchically structured proofs.
The PM translates a proof into a set of independent proo§abtins and calls upon a collection of
back-end provers to verify them. férent provers can be used to verifyfdrent obligations. The
currently supported back-ends are the tableau prover ZendtsabellETLA*, an axiomatisation of
TLAT in Isabell¢Pure. The proof obligations for a complete T24roof can also be used to certify
the theorem in Isabell€LA*.

1 Introduction

TLA* is a language for specifying the behavior of concurrent asitiibuted systems and asserting prop-
erties of those systemis [11]. However, it provides no way fitevproofs of those properties. We have

designed an extended version of the language that allovimgvgroofs, and we have begun implement-

ing a system centered aroundPeoof Manager(PM) that invokes existing automated and interactive
proof systems to check those proofs. For now, the new versidiLA* is called TLA? to distinguish

it from the current one. We describe here the TLproof constructs and the current state of the proof
system.

The primary goal of TLA? and the proof system is the mechanical verification of systepeci-
fications. The proof system must not only support the moddltamporal aspects of TLA needed to
reason about system properties, but must also supportamydimathematical reasoning in the underlying
logic. Proofs in TLA? are natural deduction proofs written in a hierarchicalestilat we have found to
be good for ordinary mathematics [9] and crucial for mangghe complexity of correctness proofs of
systems|[[B].

The PM computes proof obligations that establish the coress of the proof and sends them to one
or more back-end provers to be verified. Currently, the awk-{provers are Isabelld A", a faithful
axiomatization of TLA in IsabellgPure, and Zenon [2], a tableau prover for classical firseotdgic
with equality. The PM first sends a proof obligation to ZendinZenon succeeds, it produces an Isar
script that the PM sends to Isabelle to check. OtherwisePMeutputs an Isar script that uses one of
Isabelle’s automated tactics. In both cases, the obligstave certified by IsabellELA*. The system
architecture easily accommodates other back-end proifetfsese are proof-producing, then we can
use their proofs to certify the obligations in IsabglleA*, resulting in high confidence in the overall
correctness of the proof.

The TLA" proof constructs are described in Sectidn 2. Sedflon 3 ithescthe proof obligations
generated by the PM, and Sectldn 4 describes how the PM uses Zad Isabelle to verify them. The
conclusion summarizes what we have done and not yet donerifig discusses related work.

2 TLA* and its Proof Language

21 TLA

The TLA" language is based on the Temporal Logic of Actions (TILA) [EJ]near-time temporal logic.
The rigid variables of TLA are calledonstantsand the flexible variables are called simpfgriables
TLA assumes an underlying ordinary (non-modal) logic fanstoucting expressions. Operators of that
logic are callecconstantoperators. Astate functionis an expression built from constant operators and
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TLA constants and variables. The elementary (non-temp&wahulas of TLA areactions which are
formulas built with constant operators, constants, vémband expressions of the forfh, wheref is

a state function. (TLA also has aRasLep operator that is used in expressing fairness, but we igtore i
for brevity.) An action is interpreted as a predicate ongafrstates that describes a set of possible state
transitions, where state functions refer to the startiatesand primed state functions refer to the ending
state. Because priming distributes over constant operatwil becaus€ is equal toc for any constant

¢, an action can be reduced to a formula built from constantatpes, constants, variables, and primed
variables.

TLA is practical for describing systems because all the derity of a specification is in the action
formulas. Temporal operators are essentially used onlggeraliveness properties, including fairness
of system actions. Most of the work in a TLA proof is in proviagtion formulas; temporal reasoning
occurs only in proving liveness properties and is limitegtopositional temporal logic and to applying
a handful of proof rules whose main premises are action ftasniBecause temporal reasoning is such
a small part of TLA proofs, we have deferred its implemenptati The PM now handles only action
formulas. We have enough experience mechanizing TLA's teadpeasoning [4] to be fairly confident
that it will not be hard to extend the PM to support it.

A formula built from constant operators, constants, vdesband primed variables is vali€t it
is a valid formula of the underlying logic when constantsiialales, and primed variables are treated
as distinct variables of the logic—that is,vifandVv are considered to be two distinct variables of the
underlying logic, for any TLA variable. Since any action formula is reducible to such a formuldpact
reasoning is immediately reducible to reasoning in the dyidg logic. We therefore ignore variables
and priming here and consider only constant formulas.

2.2 TLA*

The TLA' language adds the following to the TLA logic:

e An underlying logic that is essentially ZFC set theory pllassical untyped first-order logic with
Hilbert’s £ [13]. The major diference between this underlying logic and traditional ZF@a
functions are defined axiomatically rather than being regmied as sets of ordered pairs.

e A mechanism for defining operators, where a user-definedatgueis essentially a macro that is
expanded syntactically. (TL*Apermits recursive function definitions, but they are traresl to
ordinary definitions using Hilbert’s.)

e Modules, where one module can import definitions and thesiieom other modules. A module
is parameterized by its declared variables and constantsjtanay be instantiated in another
module by substituting expressions for its parameters. cbmebination of substitution and the
ENABLED Operator introduces some complications, but space limitatprevent us from discussing
them, so we largely ignore modules in this paper.

TLA* has been extensively documented|[11]. Since we are corttemlg with reasoning about its
underlying logic, which is a very familiar one, we do not batho describe TLAIn any detail. All of
its nonstandard notation that appears in our examples laiarg.

2.3 The Proof Language

The major new feature of TLA s its proof language. (For reasons having nothing to do pithofs,
TLA*? also introduces recursive operator definitions, which vm@iig here for brevity.) We describe the
basic proof language, omitting a few constructs that canespects such as module instantiation that
we are not discussing. TIYAalso adds constructs for naming subexpressions of a defiratitheorem,
which is important in practice for writing proofs but is ootjonal to the concerns of this paper.
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The goal of the language is to make proofs easy to read ane forisomeone with no knowledge of
how the proofs are being checked. This leads to a mostly idgisla language, built around the uses and
proofs of assertions rather than around the applicatiorradfgsearch tactics. It is therefore more akin
to Isabellglsar [17] than to more operational interactive languages st Coq’s Vernacular [16]. Nev-
ertheless, the proof language does include a few operationatructs that can eliminate the repetition
of common idioms, albeit with some loss of perspicuity.

At any point in a TLA proof, there is a current obligation that is to be proved. ®hkgation
contains acontextof known facts, definitions, and declarations, argbal The obligation claims that
the goal is logically entailed by the context. Some of thédfand definitions in the context are marked
(explicitly or implicitly) asusablefor reasoning, while the remaining facts and definitionshadeen

Proofs are structured hierarchically. The leaf (lowesgele proof osvious asserts that the current
goal follows easily from the usable facts and definitionse Tgaf proof

BY €1,...,€m DEFS O1,...,0n

asserts that the current goal follows easily from the usfaalis and definitions together with (i) the facts
& that must themselves follow easily from the context andtii§ known definitions ob;. Whether a
goal follows easily from definitions and facts depends on vghoying to prove it. For each leaf proof,
the PM sends the correspondileaf obligationto the back-end provers, so in practice “follows easily”
means that a back-end prover can prove it. A non-leaf proaf sequence afteps each consisting
of a begin-step token and a proof construct. For some canstfincluding a simple assertion of a
proposition) the step takes a subproof, which may be omititk final step in the sequence simply
asserts the current goal, which is represented by the t@kerA begin-step token is eitherlavel token

of the form(n) or alabel of the form¢n)l, wheren is a level number that is the same for all steps of this
non-leaf proof, and is an arbitrary nhame. The hierarchical structure is dedficed the level numbers
of the begin-step tokens, a higher level number beginningbpreof.

Some steps make declarations or definitions or change thentwoal and do not require a proof.
Other steps make assertions that become the current godtsefoproofs. An omitted proof (or one
consisting of the tokenmrirtep) is considered to be a leaf proof that instructs the assettibe accepted
as true. Of course, the proof is then incomplete. From a &bgioint of view, an omitted step is the
same as an additional assumption added to the theorem; fronactical point of view, it doesn’t have
to be lifted from its context and stated at the start. Omittbs are intended to be used only in the
intermediate stages of writing a proof.

Following a step that makes an assertion (and the step’d)puadtil the end of the current proof
(after theqep step), the contexts contain that assertion in their setsofvk facts. The assertion is
marked usablefli the begin-step token is a level token; otherwise it can bermed to by its label in ay
proof or made usable withae step.

The hierarchical structure of proofs not only aids in regdime finished proof but is also quite useful
in incrementally writing proofs. The steps of a non-leafgirare first written with all proofs but that
of the gep step omitted. After checking the proof of thep step, the proofs omitted for other steps
in this or earlier levels are written in any order. When wagtithe proof, one may discover facts that
are needed in the proofs of multiple steps. Such a fact is dldeled to the proof as an earlier step, or
added at a higher level. It can also be removed from the priathiectheorem and proved separately as a
lemma. However, the hierarchical proof language encousréags relevant only for a particular proof to
be kept within the proof, making the proof’s structure eagiesee and simplifying maintenance of the
proof. For correctness proofs of systems, the first few tewkthe hierarchy are generally determined by
the structure of the formula to be proved—for example, tleopthat a formula implies a conjunction
usually consists of steps asserting that it implies eacjuooh
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As an example, we incrementally construct a hierarchicabfpof Cantor’s theorem, which states
that there is no surjective function from a set to its powerisés written in TLA' as:

THEOREM VS : VT € [S — susser S]: A€ suBser S:VXxe S: f[x] #A

where function application is written using square bragkeiser S is the powerset 08, and 5 — T]
is the set of functions frors to T.

The statement of the theorem is the current goal for its éwptproof. A goal of the fornvv: e
is proved by introducing a generic constant and proving ¢mméla obtained by substituting it for the
bound identifier. We express this as follows, usingAfsme/provE construct of TLA?:

THEOREM VS : Vf € [S — susser S]: A€ suBser S:Vxe S: f[x] #A
(1)1. ASSUME NEW S,
New f €[S — susser S
PROVE JA € suBseT S:VXxe S: f[x] #A
(1)2. @ep BY (1)1

Although we could have used labels suchB®neand(1)lastinstead of1)1 and(1)2, we have found
that proofs are easier to read when steps at the same leviabated with consecutive numbers. One
typically starts using consecutive step humbers and thes labels like(3)2a for inserting additional
steps. When the proof is finished, steps are renumbered adivady. (A planned user interface will
automate this renumbering.)

Step(1)1 asserts that for any consta@snd f with f € [S — susser S], the proposition to the right
of therrove is true. More precisely, the current context for the (as ystritten) proof of(1)1 contains
the declarations o6 and f and the usable fadt € [S — susser S], and theprove assertion is its goal.
The qep step states that the original goal (the theorem) followsiftbe assertion in stefl)1.

We tell the PM to check this (incomplete) proof, which it dbgshaving the back-end provers verify
the proof obligation for theep step. The verification succeeds, and we now continue byngrifie
proof of (1)1. (Had the verification failed becaué®)1 did not imply the current goal, we would have
caught the error before attempting to prdiel, which we expect to be harder to do.)

We optimistically start with the proodsvious, but it is too hard for the back-end to prove, and the
PM reports a timeout. Often this means that a necessary rfatgfmition in the context is hidden and
we merely have to make it usable withuge step or asy proof. In this case we have no such hidden
assumptions, so we must refine the goal into simpler goalsauiton-leaf proof. We let this proof have
level 2 (we can use any level greater than 1). Since the geaf is existentially quantified, we must
supply a witness. In this case, the witness is the classgode set, which we call .

(1)1. ASSUME NEW S,
New f €[S — susser S
PROVE JA € suBsET S:VXe S: f[x] # A
(2)1.perINe T £{z€ S: z¢ f[Z]}
(2)2.YxeS:f[X]#T
(2)3. QED BY (2)2

Because definitions made within a proof are usable by deflgtdefinition ofT is usable in the proofs
of (2)2 and(2)3. Once again, the proof of thep step is automatically verified, so all that remains is to
prove(2)2. (TheperiNe Step requires no proof.)

The system acceptsvious as the proof of2)2 because the only fiiculty in the proof of(1)1 is
finding the witness. However, suppose we want to add anathiel bf proof for the benefit of a human
reader. The universal quantification is proved as aboventbgducing a fresh constant:

4
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(2)2.¥xeS:f[x]#T
(3)1. ASSUME NEW X € SPROVE f[X] # T
(3)2. Qep BY (3)1

Naturally, theqep step is verified. Although the system accepisious as the proof 0f3)1 (remember
that it could verify(2)2 by itself), we can provide more detail with yet another leferoof. We write
this proof the way it would seem natural to a person—by bragakiinto two cases:

(3)1. ASSUME NEW X € SPROVE f[X] # T
(M1.case XeT
(4)2.casE X¢ T
(4)3. QeD BY (4)1,(4)2

The (omitted) proof of thease statement4)1 has as its goal[x] # T and has the additional usable fact
X € T in its context.

We continue refining the proof in this way, stopping withaasirous or sy proof when a goal is obvi-
ous enough for the back-end prover or for a human readerndamgeon who the proof is being written
for. A By statement can guide the prover or the human reader by liséhgjul obvious consequences of
known facts. For example, the proof @)1 might besy x ¢ f[X]. The proof is now finished: it contains
no omitted sub-proofs. For reference, the complete text@ptroof is given in AppendixIB.

Our experience writing hand proofs makes us expect thatfprfosystems could be ten or more
levels deep, with the first several levels dictated by thecsitire of the property to be proved. Our method
of numbering steps makes such proofs manageable, and wetaaware of any good alternative.

This example illustrates how the proof language suppog$tbrarchical, non-linear, and incremen-
tal development of proofs. The proof writer can work on thestaroblematic unproved steps first,
leaving the easier ones for later. Finding that a step cammptroved (for example, because it is invalid)
may require changing other steps, making proofs of thoser steps wastedt®rt. We intend to provide
an interface to the PM that will make it easy for the user tadat which proofs should be checked and
will avoid unnecessarily rechecking proofs.

The example also shows how already-proved facts are ggnadlmade usable, but are invoked
explicitly in By proofs. Global definitions are also hidden by default anduer must explicitly make
them usable. This makes proofs easier to read by tellingethéer what facts and definitions are being
used to prove each step. It also helps constrain the seaade $pr an automated back-end prover,
leading to more ficient verification. Facts and definitions can be switchedbeh usable and hidden
by use andume steps, which have the same syntax®asAs noted above, omitting the label from a step’s
starting token (for example, writingf}) instead of(4)2) makes the fact it asserts usable. This might be
done for compactness at the lowest levels of a proof.

The example also indicates how the current proof obligadtaevery step of the proof is clear, having
been written explicitly in a parent assertion. This cleanctire comes at the cost of introducing many
levels of proof, which can be inconvenient. One way of ava@idhese extra levels is by using an assertion
of the formsurrices A, which asserts that provingproves the current goal, and makethe new current
goal in subsequent steps. In our example proof, one levékiptoof of steg2)2 can be eliminated by
writing the proof as:

(2)2.YxeS:f[X]#T
(3)1. SUFFICES ASSUME NEW X € S PROVE f[X] # T
PROOF OBVIOUS
(3)2.casE XeT
(3)3.casE X¢ T
(3)4. qep BY (3)2,(3)3
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where the proofs of thease steps are the same as before. Jieices statement changes the current goal
of the level-3 proof tof[X] # T after adding a declaration ofand the usable facte S to the context.
This way of proving a universally quantified formula idlstiently common that TLZ provides arake
construct that allows thesrrices assertion3)1 and itsosvious proof to be writtentake X€ S .

There is a similar constructyrrness f € S for proving an existentially quantified godik e S: g,
which changes the goal #x := f]. For implicational goale = f, the construckiave e changes the goal
to f. No other constructs in the TI*Aproof language change the form of the current goal. We advise
that these constructs be used only at the lowest levels girtiaf, since the new goal they create must
be derived instead of being available textually in a parssedion. (As a check and an aid to the reader,
one can at any point insert a redundsuitrices step that simply asserts the current goal.)

The final TLA™ proof construct igick X : e, which introduces a new symbgithat satisfie®. The
goal of the proof of thigick step isdx: e, and it changes the context of subsequent steps by adding a
declaration ofx and the face. A more formal summary of the language appears in Appendix A.

The semantics of a TLA proof is independent of any back-end proverft&ient provers will have
different notions of what “follows easily”, so amvious proof may be verified by one prover and not
another. In practice, many provers such as Isabelle musirbetet to use decision procedures or spe-
cial tactics to prove some assertions. For this purposeaiapstandard modules will contain dummy
theorems for giving directives to the PM. Using such a theofeith ause step orsy proof) will cause
the PM not to use it as a fact, but instead to generate spdcéatides for back-end provers. It could
even cause the PM to use dfdrent back-end prover. (If possible, the dummy theorem agflert a
true fact that suggests the purpose of the directive.) Raite, using the theoreftrithmeticmight be
interpreted as an instruction to use a decision proceduiatkgers. We hope that almost all uses of this
feature will leave the TLZ proof independent of the back-end provers. The proof willlrave to be
changed if the PM is reconfigured to replace one decisiongoire with a dierent one.

3 Proof Obligations

The PM generates a separgateof obligationfor each leaf proof and orchestrates the back-end provers
to verify these obligations. Each obligation is indepernderd can be proved individually. If the system
cannot verify an obligation within a reasonable amount ofeti the PM reports a failure. The user
must then determine if it failed because it depends on hiddets or definitions, or if the goal is too
complex and needs to be refined with another level of proaflifig facts or definitions might also help

to constrain the search space of the back-end provers.)

When the back-end provers fail to find a proof, the user withkrwhich obligation failed—that is,
she will be told the obligation’s usable context and goal tnedleaf proof from which it was generated.
We do not yet know if this will be dficient in practice or if the PM will need to provide the usertwit
more information about why an obligation failed. For exagmphany SAT and SMT solvers produce
counterexamples for an unprovable formula that can provsggul debugging information.

The PM will also mediate theertificationof the TLA theorem in a formal axiomatization of TEA
in a trusted logical framework, which in the current desigsabelléTLA* (described in Section 4.2).
Although the PM is designed generically and can supportrctimeilar frameworks, for the rest of this
paper we will limit our attention to IsabellELA*. Assuming that IsabellELA* is sound, once it has
certified a theorem we know that an error is possible onlyafiM incorrectly translated the statement
of the theorem into IsabeffELA*.

After certifying the proof obligations generated for thaflproofs, called théeaf obligations cer-
tification of the theorem itself is achieved in two steps.stithe PM generatessiructure lemmdand
its IsabellgTLA* proof) that states simply that the collection of leaf obligas implies the theorem.
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Then, the PM generates a proof of the theorem using the ghesxtified obligations and structure
lemma. If Isabelle accepts that proof, we are assured thdtdhslated version of the theorem is true in
IsabellgTLA*, regardless of any errors made by the PM.

Of course, we expect the PM to be correct. We now explain wishduld be by describing how
it generates the leaf obligations from the proof of a theoréRemember that we are considering only
TLA*? formulas with no temporal operators.) Formally, a theoranTlLA™ represents a closed proof
obligation in the TLA? meta-logic of the form(I i €), whereT is a contextcontaining all the dec-
larations, definitions, facts (previous assumptions oori@s) and the assumptions introduced in the
theorem using aassuMme clause (if present), anglis a TLA" formula that is theyoal of the theorem.

A closed obligation(I' I+ €) is true if e is entailed byl" in the formal semantics of TLA[LL]. It is
said to beprovableif we have a proof ok from I' in IsabellgTLA*. Because we assume IsabAlleA*
to be sound, we consider any provable obligation to be truglain is a sentence of the form: (I' I €),
wherer is a TLA™ proof. This claim represents the verification task thas a proof of the proof
obligation(I" - €). The PM generates the leaf obligations of a claim by recalgitraversing its proof,
using its structure to refine the obligation of the claim. Raron-leaf proof, each proof step modifies
the context or the goal of its obligation to produce an obiagafor its following step, and the finakp
step proves the final form of the obligation. More preciselery step definestaansformation written
o.7.(C're) — (Ar ), which states that thiaput obligation(T" I+ €) is refinedto the obligation(A I+ f)
by the stepr.7. A step is said to beneaningfulif the input obligation matches the form of the step. (An
example of a meaningless claim is one that involveska step whose input obligation does not have a
universally quantified goal.) A claim is meaningful if evestep in it is meaningful.

The recursive generation of leaf obligations for meanihgfaims and transformations is specified
using inference rules, with the interpretation that thé dddigations generated for the claim or transfor-
mation at the conclusion of a rule is the union of those geadrhy the claims and transformations in
the premises of the rule. For example, the following rulepigli?d to generate the leaf obligations for a
claimrn : (' + €) whenr is a sequence of steps, fom > 1.

o1.711:Te)— (Ar f) 02.T2 =+ on.Tn: (A )
01.71 02.72 ++» on.Tn. (CI-€)

The leaf obligations of the claim in the conclusion are thenmf those of the claim and transformation
in the premises. As an example of leaf obligations generayeal transformation, here is a rule for the
stepo-. T whereo is the begin-step level tokgm) andr is the propositiorp with proof r.

. (L,[-€] I+ p)
(ny. prroor 7t (C'-€) — (I',pI-€)

The rule concludes that the refinement in this step is totidthe context of the obligation, assuming
that the sub-proof is able to establish it. The leaf obligations generated y/ttansformation are the
same as those of the claim in the premise of the rule. The@mahegated and added to the context
as a hidden fact (the square brackets indicate hiding). Weusa—-e in a sy proof or use statement,
and doing so can simplify subproofs. (Because we are usassgicial logic, it is sound to adge to the
known facts in this way.) The full set of such rules for eveonstruct in the TLA? proof language is
given in appendik’A.

A claim is said to becompleteit its proof contains no omitted subproofs. Starting fromoaplete
meaningful claim, the PM first generates its leaf obligagi@mdfilters the hidden assumptions from
their contexts. (Filtration amounts to deleting hidderidamnd replacing hidden operator definitions with
declarations.) The PM then asks the back-end provers to foafgof the filtered obligations, which are
used to certify the obligations in Isabgll& A*. The PM next writes an Isar proof of the obligation of the
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complete meaningful claim that uses its certified filteread labligations. The following meta-theorem
(proved in Appendix’/Al4) ensures that the PM can do this foc@hplete meaningful claims.

Theorem 1(Structural Soundness Theorenti)r : (I' I €) is a complete meaningful claim and every leaf
obligation it generates is provable after filtering hiddessamptions , the(T" I €) is provable.

IsabellgTLA* then uses this proof to certify the obligation of the claimor the assumptions that the
Isabell¢gTLA* axiomatization is faithful to the semantics of Tt?Aand that the embedding of TEAINto
IsabellgTLA* is sound, it follows that the obligation is true.

4 \erifying Proof Obligations

Once the PM generates the leaf obligations, it must send thdahe back-end provers. The one non-
obvious part of doing this is deciding whether definition®dd be expanded by the PM or by the
prover. This is discussed in Sectionl4.1. We then describsttte of our two current back-end provers,
IsabellgTLA and Zenon.

4.1 Expanding Definitions

Expansion of usable definitions cannot be left entirely olihck-end prover. The PM itself must do it
for two reasons:

e It must check that the current goal has the right form fom®@e, witness, or HAVE Step to be
meaningful, and this can require expanding definitions.

e The encoding of TLA in the back-end prover’s logic would be unsound if a modalrajoe like
prime () were encoded as a non-modal operator. Hence, encodingnéidaflike O(x) £ X’ as an
ordinary definition in the prover’s logic would be unsoundl iAstances of such operators must
be removed by expanding their definitions before a leaf alilig is sent to the back-end prover.
Such operator definitions seldom occur in actual Tispecifications, but the PM must be able to
deal with them.

Another reason for the PM to handle definition expansion a the Isabell@LA* object logic does
not provide a direct encoding of definitions made within fsooWe plan to reduce the amount of
trusted code in the PM by lambda-lifting all usable defimiti@ut of each leaf obligation and introducing
explicit operator definitions using Isabelle’s meta egydk). These definitions will be expanded before
interacting with Isabelle.

4.2 |sabellgTLA*

The core of TLA? is being encoded as a new object logic Isalf€llé&* in the proof assistant Is-
abelle [14]. One of Isabelle’s distinctive features thamikr proof assistants such as Caqgl[16] or
HOL [7, [8] lack is genericity with respect toftierent logics. The base system Isah@liege provides
the trusted kernel and a framework in which the syntax andfprdes of object logics can be defined.
We have chosen to encode Ti?Aas a separate object logic rather than add it on top of oneeoéxh
isting logics (such as ZF or HOL). This simplifies the tratisla and makes it easier to interpret the
error messages when Isabelle fails to prove obligationgrakngly typed logic such as HOL would have
been unsuitable for representing T2Awhich is untyped. Isabell2F might seem like a natural choice,
but differences between the way it and TLdefine functions and tuples would have made the encod-
ing awkward and would have prevented us from reusing exidtieories. Fortunately, the genericity
of Isabelle helped us not only to define the new logic, but tdsmstantiate the main automated proof
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methods, including rewriting, resolution- and tableauvprs, and case-based and inductive reasoning.
Adding support for more specialized reasoning tools sugbrasf-producing SAT solvers [5] or SMT
solvers such as haRVey [3] will be similarly helped by exigtgeneric interfaces.

The current encoding supports only a core subset of*fLiAcluding propositional and first-order
logic, elementary set theory, functions, and the constmaif natural numbers. Support for arithmetic,
strings, tuples, sequences, and records is how being addpgort for the modal part of TL*A (vari-
ables, priming, and temporal logic) will be added later. &iehweless, the existing fragment can already
be used to test the interaction of the PM with Isabelle andrdtiack-end provers. As explained above,
IsabellgTLA* is used both as a back-end prover and to check proof scripthiped by other back-end
provers such as Zenon. If it turns out to be necessary, weenélble the user to invoke one of Isabelle’s
automated proof methods (suchago or blast) by using a dummy theorem, as explained at the end
of Sectior 2.B. If the method succeeds, one again obtainsadelle theorem. Of course, IsabglleA*
can also be used independently of the PM, which is helpfulhndebugging tactics.

4.3 Zenon

Zenon [2] is a tableau prover for classical first-order logith equality that was initially designed to
output formal proofs checkable by Cag [16]. Zenon outputefs in an automatically-checkable format
and it is easily extensible with new inference rules. Onegtiesign goals is predictability in solving
simple problems, rather than high performance in solvingpesdard problems. These characteristics
make it well-suited to our needs.

We have extended Zenon to output Isar proof scripts for IEl&A* theorems, and the PM uses
Zenon as a back-end prover, shipping the proofs it producksbelle to certify the obligation. We have
also extended Zenon with direct support for the TLWgic, including definitions and rules about sets
and functions. Adding support in the form of rules (instedd>aoms) is necessary because some rules
are not expressible as first-order axioms, notably the albbesit the set constructs:

eeS Hx:=¢€] subsetOf dyeS:e=d[x:=Y]

ee{xeS: P} ec(d: xe S} setOfAll

Even for the rules that are expressible as first-order axianding them as rules makes the proof search
procedure much morefficient in practice. The most important example is extendilgnavhen set
extensionality and function extensionality are added &mas;, they apply to every equality deduced by
the system, and pollute the search space with large numbarelevant formulas. By adding them as
rules instead, we can use heuristics to apply them only iescagere they have some chance of being
useful.

Adding support for arithmetic, strings, tuples, sequenaed records will be done in parallel with the
corresponding work on Isabelld_ A", to ensure that Zenon will produce proof scripts that IdebeLA*
will be able to check. Temporal logic will be added later. i®aplan to interface Zenon with Isabelle,
so it can be called by a special Isabelle tactic the same wey tiols are. This will simplify the PM by
giving it a uniform interface to the back-end provers. Ithalso allow using Zenon as an Isabelle tactic
independently of TLA

5 Conclusions and Future Work
We have presented a hierarchically structured proof laggfier TLA". It has several important features

that help in managing the complexity of proofs. The hierar@hstructure means that changes made
at any level of a proof are contained inside that level, witielps construct and maintain proofs. Leaf
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proofs can be omitted and the resulting incomplete prooflmchecked. This allows fligrent parts

of the proof to be written separately, in a non-linear fashibhe more traditional linear proof style, in
which steps that have not yet been proved can be used onlyli€itly added as hypotheses, encourages
proofs that use many separate lemmas. Such proofs lack tiegert structure of a single hierarchical
proof.

The proof language lets the user freely and repeatedly neaite &nd definitions usable or hidden.
Explicitly stating what is being used to prove each step rméke proof easier for a human to understand.
It also aids a back-end prover by limiting its search for aopto ones that use only necessary facts.

There are other declarative proof languages that are sitnilBLA*2. Isar [17] is one such language,
but it has significant dierences that encourage deient style of proof development. For example, it
provides araccumulatorfacility to avoid explicit references to proof steps. Thidine for short proofs,
but in our experience does not work well for long proofs that tgpical of algorithm verification that
TLA™? targets. Moreover, because Isabelle is designed for oiteeause, the ects of the Isar proof
commands are not always easily predictable, and this eagesra linear rather than hierarchical proof
development style. The Focal Proof Langudgde [1] is esdnéiassubset of the TLA proof language.
Our experience with hierarchical proofs in Focal providdditonal confidence in the attractiveness of
our approach. We know of no declarative proof language thatds flexible a method of using and
hiding facts and definitions as that of TtA

The PM transforms a proof into a collection of proof obligat to be verified by a back-end prover.
Its current version handles proofs of theorems in the nowpteal fragment of TLA that do not involve
module instantiation (importing of modules with substdn). Even with this limitation, the system
can be useful for many engineering applications. We areethex concentrating on making the PM
and its back-end provers handle this fragment of Te#ectively before extending them to the complete
language. The major work that remains to be done on this igrtptete the Zenon and Isabelle inference
rules for reasoning about the built-in constant operatér§LA*. There are also a few non-temporal
aspects of the TL& language that the PM does not yet handle, such as subexprassning. We
also expect to extend the PM to support additional back-eadeps, including decision procedures for
arithmetic and for propositional temporal logic.

We do not anticipate that any major changes will be neededed't A* proof language. We do
expect some minor tuning as we get more experience usingit.ekample, we are not sure whether
local definitions should be usable by default. A graphica&rusterface is being planned for the TLA
tools, including the PM. It will support the non-linear déeyament of proofs that the language and the
proof system allow.
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A Detalls of the PM

We shall now give a somewhat more formal specification of tiealRd prove the key Structural Sound-
ness Theoreml 1. We begin with a quick summary of the abstyatés of TLA™ proofs, ignoring the
stylistic aspects of their concrete representation. ($2kfpr a more detailed presentation of the proof
language.)

Definition 2 (TLA*? Proof Language) TLA" proofs non-leaf proofsproof stepsand begin-stegokens
have the following syntax, where n ranges over natural nusjtbever labels, e over expressiomdspver
lists of expressions, o over operator definitiodspver sets of operator nameé,over lists of binders
(i.e., constructs of the form x andexe used to build quantified expressions), andver expressions or
ASSUME . . .PROVE forms.

(Proofs) m = oBvIOUS | oMITTED | BY ® pErs ¥ | II
(Non-leaf proofs) I 0. QED PROOF 7T
ot II

HAVE € | TAKEE | WITNESS @
@ PROOF 7T | SUFFICES (@ PROOF 7T | PICK ﬁ . € PROOF 7T

ny | (ml

|

(Proof steps) 7 = USsE D pErs ¥ | HIDE @ DEFs ¥ | DEFINE O
|
|

(Begin-step tokensyr
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A proof that is not a non-leaf proof is calledieaf proof The level numbers of a non-leaf proof must all
be the same, and those in the subproof of a step (that i%; ithe proor 7, etc.) must be strictly greater
than that of the step itself.

A.1 The Meta-Language

The PM uses proofs in the TEAproof language (Definitiofl2) to manipulate constructs ia heta-
language of TLA?. This meta-language naturally has no representation in"Tltgelf; we define its
syntax formally as follows.

Definition 3 (Meta-Language) The TLA? meta-language consists obligations assumptionsnd de-
finableswith the following syntax, where e ranges over Te&xpressions, x and o over Tt?Adentifiers,
and X over lists of TL# identifiers.

(Obligations) ¢ = (hy,....h e (n>0)
(Assumptions) h == Newx | 026 | ¢ | [026] | [¢]
(Definables) ) ¢ | LaMBDA X: €

The expression after in an obligation is called itgjoal An assumption written inside square brackets
[]is said to benidden otherwise it isusable For any assumption h, we write(read: hmade usableto
stand for h with its brackets removed if it is a hidden assimnptand to stand for h if it is not hidden. A
list of assumptions is called @ontext with the empty context written asve letT’, A and Q range over
contexts, witH", A standing for the context that is the concatenatiod @hd A. The context is I" with

all its hidden assumptions made usable. The obligagiere) is written simply as e. The assumptions
NEW X, 0= ¢ and [0 = ] bind the identifiers x and o respectively. We write K if x is bound inl" and

x¢ I if x is not bound inl". The contexT’, h is considered syntactically well-formefih does not bind
an identifier already bound if.

An obligation is a statement that its goal follows from thewmaptions in its context. TLA already de-
fines such a statement usingume . . .ProvE, but the contexts in such statements have no hidden assump-
tions or definitions. (To simplify the presentation, we gilie semantics of a slightly enhanced proof
language where proof steps are allowed to mention obligatinstead of just TL& ASSUME .. .PROVE
statements.) We define an embedding of obligations intcelABLA* propositions, which we take as
the ultimate primitives of the TL& meta-logic.

Definition 4. The Isabelld LA embedding-),s, Of obligations, contexts and definables is as follows:

(’)Isa =
(T €)sa = (F)Isae (CNEW X)jsa = (D)isa A\ X.
(LamBDA X: €))g, = AX. € ([,0=6)isa = (MNisa/\0.(0=(0)1sa) =

(F, ¢)Isa = (r)lsa ((¢)Isa) —

For example (new P, [(New X I P(X))] - YX: P(X))isa= A P. (A X P(X)) = ¥x: P(x). Note that usable
and hidden assumptions are treated identically for theagitity of an obligation.

The embedding of ordinary TLYAexpressions is the identity because IsalpELA" contains TLA?
expressions as part of its object syntax. Thus, we do not teaivast the embedding of ordinary TEA
expressions, just that of the obligation language. In acsome aspects of TEAexpressions, such
as the indentation-sensitive conjunction and disjunclists, are sent by the PM to Isabelle using an
indentation-insensitive encoding.While IsabAlleA* can implicitly generalize over the free identifiers
in a lemma, we shall be explicit about binding and considdigations provable only if they are closed.
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Definition 5 (Well-Formed Obligations) The obligation(I" - €) is said to bewell-formediff it is closed
and(I" - €),s5is a well-typed proposition of Isabelld A" .

Definition 6 (Provability). The obligation(I" - €) is said to beprovableiffit is well-formed andl - €),g5
is certified by the Isabelle kernel to follow from the axiorhthe IsabellgTLA" object logic.

We trust Isabell@ LA* to be sound with respect to the semantics of T, And therefore provability to
imply truth. Formally, we work under the followinigust axiom.

Axiom 7 (Trust). If ¢ is provable, then it is true.

We state a number of useful facts about obligations (whieredirtheorems in IsabelfELA*), omitting
their trivial proofs. The last one (Fdcil13) is true becausA™Tis based on classical logic.

Fact 8 (Definition). If (I',New0, A I €) is provable, thef[,0 = 6,A I+ €) is provable if it is well-formed.
Fact 9 (Weakening) If (I', A I+ €) is provable, thedI",h, A I+ €) is provable if it is well-formed.
Fact 10(Expansion) If (I',0 = 5,A I €) is provable, thedl',0 = §,A[0:= 6] I+ €0 :=6]) is provable.

Fact 11 (Strengthening) If (I',New0,A I €) or (I',0= 5,A I €) is provable and o is not free i(A I €),
then(I',A I €) is provable.

Fact 12(Cut). If (I, A+ €) is provable andI’, (A  €),Q I f) is provable, thed’,Q I+ f) is provable.
Fact 13. If (T, —e, A I+ €) is provable, ther{I', A I+ €) is provable.

Theuse/ume pers steps change the visibility of definitions in a context (Digfam 14 below). Note that
changing the visibility of a definition does ndtect the provability of an obligation because the Isabelle
embedding (Definitionl4) makes all hidden definitions usable

Definition 14. If T is a context andV’ a set of operator names, then:

1. T'with ¥ made usablewrittenT" using W, is constructed fronlr by replacing all assumptions of the
form[o 2 6] in T with o= 6 for every oc V.

2. T" with ¥ made hiddenwritten " uiping W, is constructed froni™ by replacing all assumptions of
the form o= 6 in I" with [0 = §] for every o< V.

A sequence of binde;éin the TLA" expressionyﬁ: eor 3[?: ecan be reflected as assumptions.

Definition 15 (Binding Reflection) If 5 is a list of binders with each element of the form x @re; then
thereflectionof 3 as assumptions, writtef3]|, is given inductively as follows.

= 18] = 8 e x I xe o] = e xe e

A.2 Interpreting Proofs
Let us recall some definitions from sectidn 3.

Definition 16 (Claims and TransformationsA claimis a judgement of the form: (T - €) wherer is a
TLA proof. Atransformationis a judgement of the formr.7: (I' - €) — (A I~ f) whereo is a begin-
step token ana a proof step. A claim (respectively, transformation) isdsi becompleteif its proof
(respectively, proof step) does not contain any occurreri¢be leaf proofomitTep.

The PM generates leaf obligations for a claim using two milytwacursive proceduresheckingand
transformation specified below using the formalism opamitive derivation
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Definition 17. A primitive derivationis a derivation constructed using inferences of the form

Dy Dn
E

(n>=0)

where E is either a claim or a transformation, add}, ..., D, are primitive derivations or obligations.
An obligation at the leaf of a primitive derivation is calledeaf obligation

Definition 18 (Checking and Transformatian)rhe primitive derivations of a claim or transformation
are constructed using the followirgpeckingand transformatiorrules.
1. Checkingrules

(TCre)
———— _ OBVIOUS —————————— OMITTED
osvious : ([ IF €) oMmItteD : (I I- €)

(0y. use ® pEFs ¥ : (C'I-€) — (A I f) (A f)
BY ® pEFs ¥ : ([ IF €) BY
7. (Cre ot:(Tre)— (Ar T) II: (A )

ED NON-QED
0. Qep PROOF 7 (I' I+ €) ? ot II: (e ?

2. Transformation

0. USE®D : (Tusing P IF €) — (A T)
0. USEODEFS WY : (IT'-e) — (A )

USE DEFS

o.HDE D : (TC'-e) — (A K f)
o. ook @ pers ¥ (T IF €) — (AuminG WP - f)

HIDE DEFS

o¢gl
0. DEFNEO 2 61 (T - €) — (I, [02 6] - e) DEFINE (0 ¢ T)

USE HIDE
o.Use*: (T're) — (CI-e) 0 o.HDE*: (['F€) — (CI-€e) 0

o uss®:(Tre)— (Arf)  (AToIep)
0. Use @,(Tg-e) : (Ci-e) — (A, (To - ) IF T)

USE1

o. HDE O : ([p,[¢],T1H€) — (A T)
o. °HE O, ¢ : (Fo,¢,T11FH€) — (A )

HIDE]

TAKE WITNESS
0. TAKE*: (T'F€) — (T I- €) O G witnEss<: Tre)— (Cie) 0

o take B 1 (T,NEwWU I €]X = U]) — (A I- f)
o. ke U3 (T VX:e) — (A K f)

TAKE]

CrScT) o. ke B (T,NewU, U € T - efx:=U]) — (A I f)
o mkeUeT,B: (TFVYxeS:e)— (AF f)

TAKE2

o. witNess Q (T - g[x:=w]) — (A I+ f)
o. witNess W,Q (T 3Ax:e) — (A f)

WITNESS 1
CTrTCS) CrweT) 0. witNess Q: (TLwe T - g[x:=w]) — (A T)
o. witNess WE T, Q: (' AxeS:e) — (A r f)

(T,er Q)
o.Haveg:(Tre= f)— (I,gr f)

WITNESS2

HAVE

. (L,[-€],Ar ) N
ny. (A f) prooFr: (T'HE) — (T, (A f)I-e)

SSERT{
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@ nml=(Arf),[-€],Ar ) N
Myl. (A f) proor 7 (T'F€) — (T,{Myl = (A I+ T),[{n)I] - €)

SSERT?9

o. (gr+e) proorr: (T'€) — (A )
0. casE gPROOF T (T €) — (A f)

m:(,(Arf)re)
(ny. surrices (A I f) prooFr: (I €) — (I',[-€],A I+ )

SUFFICES1

(@l = Ak f),[KnyI] - e)
(nyl. surrices (A ) proor 7 : (- €) — (I, <NY1 = (A f),[—€],A I+ )

7:(Tw 35 p)

o pick B: prrooF 7 : (T €) —> (F,llﬁ”, pI e)

SUFFICES2

PICK

The inference rules in the above definition are determmigtie conclusion of each rule uniquely de-
termines the premises. However, the rules are partial; Xamgle, there is no rule that concludes a
transformation of the formr.ake xe S: (' BAC) — (A I ).

Definition 19. A claim or a transformation is said to bmeaningfulif it has a primitive derivation.

Definition 20 (Generating Leaf Obligations)A meaningful claim or transformation is said generate
the leaf obligations of its primitive derivation.

In the rest of this appendix we limit our attention to comelateaningful claims and transformations.

A.3 Correctness

If the leaf obligations generated by a complete meanind&ihrcare provable, then the obligation in the
claim itself ought to be provable. In this section we provie theorem by analysis of the checking and
transformation rules.

Definition 21 (Provability of Claims and Transformatian)

1. The claimr: (I' I- €) is provableiff it is complete and meaningful and the leaf obligations itayen
ates are all provable.

2. The transformationr.7: (I' - €) — (A  f) is provableiff it is complete and meaningful and the
leaf obligations it generates are all provable.

Theorem 22(Correctness)

Q) If7: (I €) is provable, therfI" I €) is provable.
2) fo.t:(T're)— (A f)is provable andA  f) is provable, ther{l" I €) is provable.

Proof. Let D be the primitive derivation for the claim in (1) and Btbe the primitive derivation for the trans-
formation in (2). The proof will be by lexicographic induati on the structures ab and&, with a provable
transformation allowed to justify a provable claim.
(LHYL. If 7: (T - €) is provable, thedI i €) is provable.

(TCre)

(2)1. Caserisosvious,i.e, D=———— ___ OBVIOUS. Obvious
ovious : (I IF €)

(2)2. Caser is omrrTeD iS impossible because: (I I €) is complete.
(2)3. CaserisBy ® pers ¥, i.e.,

Eo
_(0). use P pEFs ¥ (I'I-€) — (A - ) (Aw ) oy

D BY ® pEFs ¥ : ([ IF €)
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(3)1. (A f)is provable By Definition[21.
(3)2. Qed By (3)1, i.h. (inductive hypothesis) fdy.
Do
(2)4. Caser is 0. QED PROOF 710, i.€., D = mo: (I €) QED Byi.h. for Dg.

o~ QED PROOF 1o - (T I €) '

(2)5. Caseriso.7 I1, i.e,

Eo Do
_ot:(Tre)— (A1) Im: (A f)
D= ot II: (e MON-QED.
(3)1. (A f)is provable Byi.h. for Dq.
(3)3. Qed By (3)1, i.h. for&p.
(2)6. Qed By (2)1, ...,(2)5.

(D2, Ifo.7:(T'e)— (A f)is provable andA I f) is provable, thel I €) is provable.
(2)1. Caserisuse ® pers ¥, i.e,,

&o
0. UsE D (T'usng P I-€) — (A )
"o use ®pErs ¥ (CI-€) — (A - ) USE DEFS.
(1. (Tusina W I+ €) is provable Byi.h. for &p.
(3)2. Qed By (3)1, Definition[14.

(2)2. Caser isumE ® pers V¥, i.e.,

Eo
o.upE D (C'-e) — (A )

~ . HIDE ® DEFS P | (T're) — (Aupmg ¥ I f)

(3)1. (A f)is provable By provability of (A uibing ¥ I+ f) and Definitior TH.
(3)2. Qed By (3)1, i.h. for&p.

HIDE DEFS.

(2)3. Caserisperine 0= 5 Witho¢ T, i.e,

~ . DEFNEO2 6 (L 6) — ([,[02 6] I ©) PEFINE:
(3)1. ois not free ine By o¢ I" and closedness ¢F I+ €).
(3)2. Qed By (3)1, strengthening (Factll1).

(2)4. Caserisusesi.e, &= Obvious

SEQ.
o.Use*:(T'ire) — (- e vsEo

(2)5. Caser isHDE" i.e., &= o e Tre S Treo HIDEQ. Obvious

(2)6. Caserisuse @,¢, i.e,

&o _
_ 0. UsED: (T'-€) — (Ag i f) (Ao,To I+ €p)

"o uss @, (To - €) : (T €) — (Ao, (To I &) I+ )

USE1

(3)1. (Ao,To I &) is provable By Definition[2].
(3)2. (Ao,Tg I+ &) is provable By (3)1, Definition[4.
(3)3. (Ao I+ T) is provable By provability of (Ag, (I'o I+ &) I f), (3)2, cut (FacEIR).
(3)4. Qed By (3)3, i.h. for&g

(2)7. Caser isHmE @, ¢, i.e.,

Eo
_o.HmE @ : (To,[¢].T11-€) — (A )

~ 0. HmE D, ¢ (To,,T1 - €) — (A Kk f)

HIDE] .
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(2)8.
(2)9.

(2)10.

(M11.

(212.

(2)13.

(2)14.

(3)1. (T'o,[#].T1 1+ €) is provable By provability of (A i f), i.h. for &p.
(3)2. Qed BY3)1, (Co,[¢],T1 I+ €55 = (Lo, $,T'1 I+ €),5, (Definition[d).

Caser isTaKE, i.e., & = EOQ. Obvious

TAK
0. TAKE*: ([ €) — (T - €)

Caser is wiTNEss s i.e., & = WITNESS(. Obvious
o. witness*: (T €) — (T I- €)

. 2 .
Caser IS TAKE U,f3, I.€e,,

&o
_ 0. TAKE 3 (F,lewu e[x:=u]) — (Ar f) TAKEL.
0. TAKE U,B: (CFVX:e) — (Ar f)
(1. (I,Newu - €] x:=U]) is provable Byi.h. for &p.
(3)2. Qed By (3)1 and predicate logic.
Caseriso. akeUET,i.e,
&o
CrScT) o. ke B (T,NewU, U e T - efx:= U]) — (A f)
E= TAKED.
o mkeUeT.B: (TFVYxeS:e)— (AF f)

(3)1. (T,Newu,ue T I gx:=U]) is provable Byi.h on&o.
(3)2. (I ,NewU,U€ SIFUET) is provable

W1, (T,Newu - SCT) is provable By Definition[21, weakening (Fatt 9).

(4)2. Qed By (4)1, Definition ofc.
(3)3. (INewu,u€ S - g[x:=u]) is provable By (3)1, (3)2, cut (FactIPR).
(3)4. Qed By (3)3 and predicate logic.
Caser is wiTNESs W, Q, i.e.,

&o
& = O WITNESS Q:Trex:=w])— (Ar ) WITNESSL.
o. witNess W,Q (T Ix:e) — (A f)
(1. (T eg[x:=w]) is provable Byi.h. for &p.
(3)2. Qed By (3)1.
Caser is witness wWe T,Q and:
Eo
8=(1" FTCS) CrweT) 0. WitNess Q (T, we T - gfx:=w]) — (A f) WITNESS .
o. witNess WE T, Q: (' Axe S:e) — (A r f)

(3)1. (ILwe T ex:=w]) is provable Byi.h. for &o.
(3)2. (T+weT)is provable By Definition[21.
(3)3. (I' - g[x:=w]) is provable By (3)1, (3)2, cut (FaciIR).
(3)4. (T'+weS)is provable

(MH1. (T,weTrweS)is provable By Definition[21, Definition ofc.

(4)2. Qed By (4)1, (3)2, cut (FacEIR).
(3)5. Qed By (3)3, (3)4, and predicate logic.
TISHAVE g, i.€,

_ (T,er Q)
“o.maveg:(Tre= f)— (T,gr ) HAVE:

(3)1. (I',e, g f)is provable By weakening (Faci]9).
(3)2. (T',er g) is provable By Definition[21.
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(2)15.

(2)16.

(2)17.

(2)18.

(2)19.

(2)20.

(3)3. (I',er f)is provable By (3)1, (3)2, cut (FactIR).
(3Y4. (T're= f)is provable By (3)3.
o.7is(ny. (QIF g) PROOF 7, i.€.,

Do
m:([,[-€,Qr Q)

&= (ny. (QIrg) proor: (C'ire) — (I,(Q1-g) - €) ASSERTL.
(3)1. (I,[—€],(Q I g) I+ €) is provable Byweakening (Facf]9).
(3)2. (I,[—-€],Q I+ g) is provable Byi.h. for Dg.
(3)3. (I',[-€] I €) is provable By (3)1, (3)2, cut (FacEIR).
(3)4. Qed By (3)3, Fac{IB.
Caseo.tis{n)l. (Q I g) proOF 7, i.€,,
Do
e (Ol = (Qrg),[-€], Q1 Q) ASSERT.

(ML (Qrg) prooF7: (L1 6) — (T, = (Q 1 g), KM - )

31L. (TNl = (Q I+ g),[—€],[{ny1] I €) is provable
By provability of (T, (n)| = (Q 1 g),[(n)I] I €), weakening (Fa¢il9).

32. (I,nyl 2 (Qwrg),[—€],[(Qr )] + e) is provable By (3)1, expansion (Fa€f10).
(3)3. (LM £ (Q 1 g),[—€],Q Q) is provable Byi.h. for Dg.
4. (I,{nyl £ (Qrg),[—€] I €) is provable By (3)2, (3)3, cut (FacEIR).
(3)5. (I',[—-€] I €) is provable By (3)4, strengthening (Factll1).
(3)6. Qed By (3)5, Fac{IB.
7 IS CASE J PROOF T, I.€.,

Eo
e (g€ proorr: (C'Fe) — (A f)

0. case gPrOOF 71 : (T €) — (A - f) '

Byi.h. for &.

7 is (NY. surrIcES (L IF g) PROOF T, i.€.,

Do
& 7 (T,(QrQ) e
~(ny. surrices (A I+ f) prooF 77 : (T - €) — (I',[-€],Q I Q)

SUFFICES1 .

(3)1. (I,[-€],(Q  g) - €) is provable Byi.h. for Dy, weakening (Fagf]9).
(3)2. (I',[-€] I €) is provable By provability of (I',[-€],Q I g), (3)1, cut (FaciIR).
(3)3. Qed By (3)2, Fac{IB.
o.7is(nyl. surricEs (Q IF ) PROOF 7, i.€.,

Do
. a (Tl = (Qrg),[Knyl] -e)
(1. surricEs (Q I @) ProOF 7 : (T IF €) — ([, (nyl 2 (Q - g),[—€],Q I g)

31, (.l = (Qg),[—€],[(ny]] I €) is provable Byi.h. for Dy, weakening (Fagf]9).
32. (I, <Nyl = (Qr g),[—€],[(Q 1 g)] + e) is provable By (3)1, expansion (Fa€t10).
(3)3. (I,{Nyl = (Q I+ g),[—€] I+ €) is provable

By (3)2, provability of (I, (n)| = (Q  g),[-€],Q I g), cut (FacEIR).

SUFFICES?.

(3)4. (I',[—€] I €) is provable By (3)3, strengthening (Fattll1).
(3)5. Qed By (3)4, Fac{IB.
Caser is PICKﬁ: p PROOF 7, i.€.,
Do
7:(Cv35:p)

= S = PICK.
0. PICK B: pPrOOF 71 & ([ IF€) — (F,H,BH, p I e)
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(31. (F, 3B pr e) is provable By provability of(l",”ﬁ”, p I e), predicate logic.

(3)2. (T'+ 35 p)is provable Byi.h. for D.
(3)3. Qed By(3)1, (3)2, cut (FacIR).

(2)21. Qed By (21, ...,(2)20
(1)3. Qed By (1)1, (1)2.
O

A.4 Constrained Search

The correctness theorein {22) establishes an implicatamm the leaf obligations generated by a com-
plete meaningful claim to the obligation of the claim. It isvays true, regardless of the provability of

any individual leaf obligation. While changing the visibjil of assumptions in an obligation does not

change its provability, a back-end prover may fail to pravié important assumptions are hidden. As

already mentioned in Sectigh 3, the PM removes these hidsmeptions before sending a leaf obli-

gation to a back-end prover. Therefore, in order to estalfie Structural Soundness Theorém (1), we
must prove a property about the result of this removal.

Definition 23 (Filtration). Thefiltered form of any obligationg, written (¢);, is obtained by deleting
all assumptions of the forif@o] and replacing all assumptions of the fofim= §] with New 0 anywhere
inside¢.

For example(New X, [y = X] F X=Y); = (New X, NEWY I X =Y). We thus see that filtration can render a
true obligation false; however, if the filtered form of anightion is true, then so is the obligation.

Lemma 24 (Verification Lemma) If (¢); is provable, ther is provable.

Proof Sketch.By induction on the structure of the obligatignwith each case a straightforward conse-
guence of facts]8 arid 9. i

Definition 25 (Verifiability). The obligationg is said to beverifiableif (¢); is provable.
We now prove the Structural Soundness Theoifdm (1).

Theorem 1. If 7 : ¢ is a complete meaningful claim and every leaf obligatiorgeiterates is verifiable,
theng is true.

Proof.
(1)1. For every leaf obligatiopg generated byt : ¢, it must be thatg is provable.
(2)1. Takegp as a leaf obligation generated hy ¢.

(2)2. (¢o); is provable By assumption and Definitidn 25.
(2)3. Qed By (2)2, Verification Lemma24.
(1)2. ¢ is provable By (1)1, Correctness Theordm]22.
(1)3. Qed By (1)2, Trust Axion{T.
m|
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B A TLA™ Proof of Cantor’'s Theorem

The following is the complete TLA proof of Cantor’s theorem referenced in Secfiod 2.3.

THEOREM VS : Vf € [S — susser S]: A€ suBser S:Vxe S: f[x] #A
(1)1. ASSUME NEW S,
NEw f €[S — susser S]
PROVE JA € suBseT S:VXxe S: f[x] #A
(2)1. perNe T = {z€ S:z¢ f[Z]}
(2)2. YxeS:f[x]#T
(3)1. AssuME NEw X € S PrROVE f[X] # T
(4)Y1. case X € T oBvIOUS
(4)2. case X ¢ T oBVIOUS
(4)3. QED BY (4)1,(4)2
(3)2. QEeD BY (3)1
(2)3. QED BY (2)2
(1)2. @ep BY (1)1

As an example, the leaf obligation generated (see Appéndxfar the proof of4)1 is:

( ()12 (newS,nNew f, f €[S — suBser S] - JAesuser S: VX e S f[X] # A),
NEW S,
New f, f €[S — susser S,
T2{zeS:z¢ (4},
[-(FA € suBser S:Vxe S: f[x] # A)],
(2)22YxeS: f[x] #T,
[-(VxeS: f[x] #T)],
312 (Newx,xe S f[x] #T),
NEW X, X € S,
[~ (f1X] =TI,
MHLE(xeTr f[X]£T),
XeT

Ff[X]#T )

Filtering its obligation (see Definitidn 23) and expandifigdafinitions gives:

(NEWS,
New f, f €[S — suser S,
NEW X, X€ S,
xe{zeS:z¢ f[zZ} v f[X] #{zeS:z¢ f[z]}).

In IsabellgTLA", this is the following lemma:

lemma A S.
N f. fe[S—susseT S] =
(/\x. [ xesS;
xef{zeS:z¢ f[Z} | = f[X] #{zeS:z¢ f[z]})
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