Verifying Safety Properties With the TLA* Proof System

Kaustuv Chaudhuri', Damien Doligez?, Leslie Lamport?, and Stephan Merz*

' INRIA Saclay, France, kaustuv.chaudhuri@inria. fr
2 INRIA Rocquencourt, France, damien.doligez@inria. fr
3 Microsoft Research Silicon Valley, USA, http://lamport.org
4 INRIA Nancy, France, stephan.merz@inria. fr

1 Overview

TLAPS, the TLA* proof system, is a platform for the development and mechanical
verification of TLA* proofs. The TLA* proof language is declarative, and understand-
ing proofs requires little background beyond elementary mathematics. The language
supports hierarchical and non-linear proof construction and verification, and it is inde-
pendent of any verification tool or strategy. Proofs are written in the same language as
specifications; engineers do not have to translate their high-level designs into the lan-
guage of a particular verification tool. A proof manager interprets a TLA* proof as a
collection of proof obligations to be verified, which it sends to backend verifiers that
include theorem provers, proof assistants, SMT solvers, and decision procedures.

The first public release of TLAPS is available from [1], distributed with a BSD-like
license. It handles almost all the non-temporal part of TLA* as well as the temporal
reasoning needed to prove standard safety properties, in particular invariance and step
simulation, but not liveness properties. Intuitively, a safety property asserts what is per-
mitted to happen; a liveness property asserts what must happen; for a more formal
overview, see [3, 10].

2 Foundations

TLA* is a formal language based on TLA (the Temporal Logic of Actions) [12]. It was
designed for specifying the high-level behavior of concurrent and distributed systems,
but it can be used to specify safety and liveness properties of any discrete system or
algorithm. A behavior is a sequence of states, where a state is an assignment of values
to state variables. Safety properties are expressed by describing the allowed steps (state
transitions) in terms of actions, which are first-order formulas involving two copies v
and V' of each state variable, where v denotes the value of the variable at the current
state and V' its value at the next state. These properties are proved by reasoning about
actions, using a small and restricted amount of temporal reasoning. Proving liveness
properties requires propositional linear-time temporal logic reasoning plus a few TLA
proof rules.

It has always been possible to assert correctness properties of systems in TLA*, but
not to write their proofs. We have added proof constructs based on a hierarchical style
for writing informal proofs [11]. The current version of the language is essentially the

same as the version described elsewhere [7]. Here, we describe only the TLAPS proof
system. Hierarchical proofs are a stylistic variant of natural deduction with lemmas and
have been used in other declarative proof languages [8, 14, 15]. A hierarchical proof is
either a sequence of steps together with their proofs, or a leaf (lowest-level) proof that
simply states the known facts (previous steps and theorems) and definitions from which
the desired conclusion follows. The human reader or a backend verifier must ensure that
the leaf proofs are correct in their interpretation of TLA* to believe the entire proof.

The TLAPS proof manager, TLAPM, reads a (possibly incomplete) hierarchical
proof and invokes the backend verifiers to verify the leaf proofs. One important back-
end is Isabelle/TLA*, which is an implementation of TLA" as an Isabelle object logic
(see Section 4.1). Isabelle/TLA* can be used directly with Isabelle’s generic proof
methods, or other certifying backend verifiers can produce proofs that are checked by
Isabelle/TLA". Currently, the only certifying backend is the Zenon theorem prover [4].
Among the non-certifying backends is a generic SMT-LIB-based backend for SMT
solvers, and a decision procedure for Presburger arithmetic. We plan to replace these
with certifying implementations such as the SMT solver veriT [5] and certifying imple-
mentations of decision procedures [6].

TLAPS is intended for avoiding high-level errors in systems, not for providing a
formal foundation for mathematics. It is far more likely for a system error to be caused
by an incomplete or incorrect specification than by an incorrect proof inadvertently ac-
cepted as correct due to bugs in TLAPS. Although we prefer certifying backends when-
ever possible, we include non-certifying backends for automated reasoning in important
theories such as arithmetic.

3 Proof management

A TLA" specification consists of a root module that can (transitively) import other
modules by extension and parametric instantiation. Each module consists of a number
of parameters (state variables and uninterpreted constants), definitions, and theorems
that may have proofs. TLAPS is run by invoking the Proof Manager (TLAPM) on the
root module and telling it which proofs to check. In the current version, we use pragmas
to indicate the proofs that are not to be checked, but this will change when TLAPS
is integrated into the TLA* Toolbox IDE [2]. The design of TLAPM for the simple
constant expressions of TLA* was described in [7]; this section explains the further
processing required to support more of the features of TLA*. TLAPM first flattens the
module structure, since the module language of TLA* is not supported by backend
verifiers, which will likely remain so in the future.

Non-constant reasoning: A TLA' module parameter is either a constant or a (state)
variable. Constants are independent of behaviors and have the same value in each state
of the behavior, while a variable can have different values in different states. Following
the tradition of modal and temporal logics, TLA" formulas do not explicitly refer to
states. Instead, action formulas are built from two copies v and V' of variables that refer
to the values before and after the transition. More generally, the prime operator ’ can
be applied to an entire expression e, with ¢’ representing the value of e at the state after

a step. A constant expression e is one that does not involve any state variables, and
is therefore equal to ¢’. (Double priming is not allowed in TLA*; the TLA* syntactic
analyzer catches such errors.)

Currently, all TLAPS backends support logical reasoning only on constant expres-
sions. The semantics of the prime operator is therefore syntactically approximated as
follows: it is commuted with all ordinary operators of mathematics and is absorbed by
constant parameters. Thus, if e is the expression (u = v + 2 * ¢) where u and v are vari-
ables and ¢ a constant, then ¢’ equals ' = V' + 2 % ¢c. TLAPM currently performs such
rewrites and its rewrite engine is trusted.

Operators and substitutivity: At any point in the scope of its definition, a user-defined
operator is in one of two states: usable or hidden. A usable operator is one whose defi-
nition may be expanded in a proof; for example, if the operator P defined by P(x,y) =
Xx + 2 *y is usable, then TLAPM may replace P(2,20) with 2 + 2 * 20 (but not with
42, which requires proving that 2 + 2 * 20 = 42). A user-defined operator is hidden by
default; it is made usable in a particular leaf proof by explicitly citing its definition, or
for the rest of the current subproof by a usk step (see [7] for the semantics of USE).

Because TLA™ is a modal logic, it contains operators that do not obey substitutivity,
which underlies Leibniz’s principle of equality. For example, from (u# = 42) = TRUE one
cannot deduce (u = 42) = TRUF, i.e., ' = 42. A unary operator O(_) is substitutive if
e = fimplies O(e) = O(f), for all expressions e and f. This definition is extended in the
obvious way to operators with multiple arguments. Most of the modal primitive opera-
tors of TLA™ are not substitutive; and an operator defined in terms of non-substitutive
operators can be non-substitutive. If a non-substitutive operator is usable, then TLAPM
expands its definition during preprocessing, as described in the previous paragraph; if it
is hidden, then TLAPM replaces its applications by cryptographic hashes of its text to
prevent unsound inferences by backend verifiers. This is a conservative approximation:
for example, it prevents proving O(e A f) = O(f A e) for a hidden non-substitutive op-
erator O. Users rarely define non-substitutive operators, so there seems to be no urgent
need for a more sophisticated treatment.

Subexpression references: A fairly novel feature of the TLA* proof language is the abil-
ity to refer to arbitrary subexpressions and instances of operators, theorems, and proof
steps that appear earlier in the module or in imported modules, reducing the verbosity
and increasing the maintainability of TLA™ proofs. Positional references denote a path
through the abstract syntax; for example, for the definition, O(x, y) = x=20x y+2,
the reference O(3, 4)!2!1 resolves to the first subexpression of the second subexpression
of 0(3,4), i.e., 20 = 4. Subexpressions can also be labelled and accessed via labelled
references. For example, for O(x,y) 2x= I::(y % 20) + 2, the reference O(3, 4)![refers
to 4 % 20 and will continue to refer to this expression even if the definition of O is later
modified to O(x,y) = x=7x y? + 1::(20 * y) + 2. TLAPM replaces all subexpression
references with the expressions they resolve to prior to further processing.

Verifying obligations: Once an obligation is produced and processed as described be-
fore, TLAPM invokes backend verifiers on the proof obligations corresponding to the
leaf proofs. The default procedure is to invoke the Zenon theorem prover first. If Zenon

succeeds in verifying the obligation, it produces an Isabelle/Isar proof script that can
be checked by Isabelle/TLA". If Zenon fails to prove an obligation, then Isabelle/TLA*
is instructed to use one of its automated proof methods. The default procedure can be
modified through pragmas that instruct TLAPM to bypass Zenon, use particular Isabelle
tactics, or use other backends. Most users will invoke the pragmas indirectly by using
particular theorems from the standard TLAPS module. For instance, using the theorem
named SimpleArithmetic in a leaf proof causes TLAPM to invoke a decision proce-
dure for Presburger arithmetic for that proof. The user can learn what standard theorems
can prove what kinds of assertions by reading the documentation, but she does not need
to know how such standard theorems are interpreted by TLAPM.

4 Backend verifiers

4.1 Isabelle/TLA*

Isabelle/TLA" is an axiomatization of TLA™ in the generic proof assistant Isabelle [13].
It embodies the semantics of the constant fragment of TLA™ in TLAPS; as mentioned
in Section 2, it is used to certify proofs found by automatic backend verifiers. We ini-
tially considered encoding TLA* in one of the existing object logics that come with
the Isabelle distribution, such as Isabelle/ZF or Isabelle/HOL. However, this turned out
to be inconvenient, mainly because TLA* is untyped. (Indeed, TLA* does not even
distinguish between propositions and terms.) We would have had to define a type of
TLA™ values inside an existing object logic and build TLA*-specific theories for sets,
functions, arithmetic efc., essentially precluding reuse of the existing infrastructure.

Isabelle/TLA" defines classical first-order logic based on equality, conditionals, and
Hilbert’s choice operator. All operators take arguments and return values of the sin-
gle type c representing TLA" values. Set theory is based on the uninterpreted predi-
cate symbol € and standard Zermelo-Frinkel axioms. Unlike most presentations of ZF,
TLA* considers functions to be primitive objects rather than sets of ordered pairs. Nat-
ural numbers with zero and successor are introduced using Hilbert’s choice as some
set satisfying the Peano axioms; the existence of such a set is established from the
ZF axioms. Basic arithmetic operators over natural numbers such as <, +, and * are
defined by primitive recursion, and division and modulus are defined in terms of +
and *. Tuples and sequences are defined as functions whose domains are initial intervals
of the natural numbers. Characters are introduced as pairs of hexadecimal digits, and
strings as sequences of characters. Records are functions whose domains are finite sets
of strings. Isabelle’s flexible parser and pretty-printer transparently converts between
the surface syntax and the internal representation. The standard library introduces ba-
sic operations for these data structures and proves elementary lemmas about them. It
currently provides more than 1400 lemmas and theorems, corresponding to about 200
pages of pretty-printed Isar text. Isabelle/TLA* sets up Isabelle’s generic automated
proof methods (rewriting, tableau and resolution provers, and their combinations).

It is a testimony to the genericity of Isabelle that setting up a new object logic was
mostly a matter of perseverance and engineering. Because TLA™ is untyped, many the-
orems come with hypotheses that express “typing conditions”. For example, proving
n + 0 = n requires proving that n is a number. When the semantics of TLA* allowed

us to do so, we set up operators so that they return the expected “type”; for example,
P A q is guaranteed to be a Boolean value whatever its arguments p and g are. In other
cases, typechecking is left to Isabelle’s automatic proof methods; support for condi-
tional rewrite rules in Isabelle’s simplifier was essential to make this work.

4.2 Zenon

Zenon is a theorem prover for first-order logic with Hilbert’s choice operator and equal-
ity. It is a proof-producing theorem prover: it outputs formal proof scripts for the theo-
rems it proves. Zenon was extended with a backend that produces proofs in Isar syntax;
these proofs use lemmas based on the Isabelle/TLA* object logic and are passed to
Isabelle for verification. Zenon is therefore not part of the trusted code base of TLAPS.

Zenon had to be extended with deduction rules specific to TLA*: rules for reason-
ing about set-theoretic operators, for the case operator of TLA®, for set extensionality
and function extensionality, for reasoning directly on bounded quantifiers (which is not
needed in theory but is quite important for efficiency), and for reasoning about func-
tions, strings, efc. Interestingly, Hilbert’s choice operator was already used in Zenon for
Skolemization, so we were easily able to support the cHoosE operator of TLA™.

Future work includes adding rules to deal with tuples, sequences, records, and arith-
metic, and improving the handling of equality. While there is some overlap between
Zenon and Isabelle’s automatic methods as they are instantiated in Isabelle/TLA®, in
practice they have different strong points and there are many obligations where one
succeeds while the other fails. Zenon uses Isabelle’s automatic proof tactics for some
of the elementary steps when it knows they will succeed, in effect using these tactics as
high-level inference rules.

4.3 Other backends

The first release of TLAPS comes with some additional non-certifying backends. For
arithmetic reasoning we have:

— An SMT-LIB based backend that can be linked to any SMT solver. Obligations are
rewritten into the AUFLIRA theory of SMT-LIB, which generally requires omit-
ting assumptions that lie outside this theory. This backend is needed for reasoning
about real numbers. We have successfully used Yices, CVC3, Z3, veriT and Alt-
Ergo in our examples. In future work we might specialize this generic backend for
particular solvers that can reason about larger theories.

— A Presburger arithmetic backend, for which we have implemented Cooper’s al-
gorithm. Our implementation is tailored to certain elements of TLA™ that are not
normally part of the Presburger fragment, but can be (conservatively) injected.

For both these backends, TLAPM performs a simple and highly conservative sort detec-
tion pass for bound identifiers. Both backends are currently non-certifying, but we plan
to replace them with certifying backends in the future. In particular, we are integrating
the proof-producing SMT solver veriT [5], with the goal of tailoring it for discharging
TLA™ proof obligations.

5 Proof development

Writing proofs is hard and error-prone. Before attempting to prove correctness of a
TLA* specification, we first check finite instances with the TLC model checker [12].
This usually catches numerous errors quickly — much more quickly than by trying to
prove it correct. Only after TLC can find no more errors do we try to write a proof.

The TLA" language supports a hierarchical, non-linear proof development process
that we find indispensable for larger proofs [9]. The highest-level proof steps are derived
almost without thinking from the structure of the theorem to be proved. For example, a
step of the form P; V...V P, = Q is proved by the sequence of steps asserting P; = O,
for each i. When the user reaches a simple enough step, she first tries a fully automatic
proof using a leaf directive citing the facts and definitions that appear relevant. If that
fails, she begins a new level with a sequence of proof-less assertion steps that simplify
the assertion, and a final QED step asserting that the goal follows from these steps. These
new lower-level steps are tuned until the QEp step is successfully verified. Then, the
steps are proved in any order. (The user can ask TLAPM what steps have no proofs.)
The most common reason that leaf proofs fail to verify is that the user has forgotten to
use some fact or definition. When a proof fails, TLAPM prints the usable hypotheses
and the goal, with usable definitions expanded. Examining this output often reveals the
omission.

This kind of hierarchical development cries for a user interface that allows one to
see what has been proved, hide irrelevant parts of the proof, and easily tell TLAPM
what it should try to prove next. Eventually, these functions will be provided by the
TLA* Toolbox. (It now performs only the hiding.) When TLAPS is integrated into the
Toolbox, writing the specification, model-checking it, and writing a proof will be one
seamless process. Meanwhile, we have written an Emacs mode that allows hierarchical
viewing of proofs and choosing which parts to prove.

We expect most users to assume simple facts about data structures such as sequences
rather than spending time proving them — especially at the beginning, before we have
developed libraries of such facts for common data structures. Relying on unchecked
assumptions would be a likely source of errors; it is easy to make a mistake when
writing an “obviously true” assumption. Such assumptions should therefore be model-
checked with TLC.

5.1 Example developments

We have written a number of proofs, mainly to find bugs and see how well the prover
works. Most of them are in the examples sub-directory of the TLAPS distribution.
Here are the most noteworthy:

— Peterson’s Mutual Exclusion Algorithm. This is a standard shared memory mutual
exclusion algorithm. The algorithm (in its 2-process version) is described in a dozen
lines of PlusCal, an algorithm language that is automatically translated to TLA*.
The proof of mutual exclusion is about 130 lines long.

— The Bakery Algorithm with Atomic Reads and Writes. This is a more complicated
standard mutual exclusion example; its proof (for the N-process version) is 800
lines long.

— Paxos. We have specified a high-level version of the well-known Paxos consensus

algorithm as a trivial specification of consensus and two refinement steps—a total
of 100 lines of TLA*. We have completed the proof of the first refinement and most
of the proof of the second. The first refinement proof is 550 lines long; we estimate
that the second will be somewhat over 1000 lines.

Tuning the back-end provers has made them more powerful, making proofs easier to
write. While writing machine-checked proofs remains tiresome and more time consum-
ing than we would like, it has not turned out to be difficult once the proof idea has been
understood.

Acknowledgements Georges Gonthier helped design the TLA* proof language. Jean-
Baptiste Tristan wrote the (incomplete) Paxos proof.

References

11.

12.
13.

14.

15.

. TLAPS web-site. http://www.msr-inria.inria.fr/~doligez/tlaps.
. TLA* Toolbox. http://www.tlaplus.net/tools/tla-toolbox/.
. B. Alpern and F. B. Schneider. Defining liveness. Inf. Process. Lett., 21(4):181-185, Oct.

1985.

. R. Bonichon, D. Delahaye, and D. Doligez. Zenon : An extensible automated theorem prover

producing checkable proofs. In N. Dershowitz and A. Voronkov, editors, Proc. 14th LPAR,
pages 151-165. Springer LNCS 4790, Oct. 2007.

. T. Bouton, D. C. de Oliveira, D. Déharbe, and P. Fontaine. veriT: An open, trustable and

efficient SMT-solver. In R. Schmidt, editor, CADE 22, pages 151-156, Montreal, Canada,
2009. Springer LNCS 5663.

. A. Chaieb and T. Nipkow. Proof synthesis and reflection for linear arithmetic. Journal of

Automated Reasoning, 41:33-59, 2008.

. K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz. A TLA" Proof System. In G. Sut-

cliffe, P. Rudnicki, R. Schmidt, B. Konev, and S. Schulz, editors, Workshop on Knowledge
Exchange: Automated Provers and Proof Assistants, number 418 in CEUR Workshop Pro-
ceedings, pages 17-37, 2008.

. P. Corbineau. A declarative proof language for the Coq proof assistant. In F. Honsell,

M. Miculan, and 1. Scagnetto, editors, Workshop on Types for Proofs and Programs, pages
69-84, Udine, Italy, 2007. Springer LNCS 4941.

. E. Gafni and L. Lamport. Disk Paxos. Distributed Computing, 16(1):1-20, 2003.
. L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng.,

SE-3(2):125-143, Mar. 1977.

L. Lamport. How to write a proof. American Mathematical Monthly, 102(7):600-608, Aug.
1995.

L. Lamport. Specifying Systems. Addison-Wesley, Boston, 2003.

L. C. Paulson. Isabelle: A Generic Theorem Prover. Springer Verlag LNCS 828, Berlin,
Heidelberg, 1994.

P. Rudnicki. An overview of the Mizar project. In Workshop on Types for Proofs and
Programs, pages 311-332, Bastad, Sweden, 1992.

M. Wenzel. The Isabelle/Isar reference manual, Dec. 2009.
http://isabelle.in.tum.de/dist/Isabelle/doc/isar-ref.pdf.

