Vérification formelle de conditions d'ordonnançabilité de tâches temps réel périodiques strictes

Daniel de Rauglaudre

Équipe-projet Aoste - Inria

6 février 2012

- introduction
- 2 théorème
- 3 preuve formelle
- 4 conclusion

- Introduction
- 2 théorème
- g preuve formelle
- 4 conclusion

Introduction

Motivation:

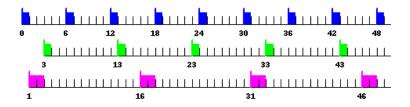
- Systèmes embarqués : sécurité.
- Tester preuves formelles.
- Projet P (Oséo).

Logiciels d'ordonnancement :

- SynDEx de l'équipe Aoste (multiprocesseur).
- Dameid.

Exemple de trois tâches

```
tâche \tau_1: {phase = 0; durée = 1; période = 6} tâche \tau_2: {phase = 3; durée = 1; période = 10} tâche \tau_3: {phase = 1; durée = 2; période = 15}
```



- introduction
- 2 théorème
- g preuve formelle
- 4 conclusion

Théorème (Jan Korst - 1992)

Une liste de tâches $\{\tau_1 ... \tau_n\}$ est ordonnançable par l'algorithme de périodicité stricte non préemptive, si et seulement si :

$$\forall \tau_i = (\phi_i, d_i, P_i) \in \{\tau_1 \dots \tau_n\}$$

$$\forall \tau_j = (\phi_j, d_j, P_j) \in \{\tau_1 \dots \tau_n\}$$

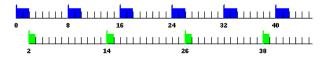
avec i \neq j et $\phi_i \le \phi_j$

on ait :

$$d_i \leq (\phi_j - \phi_i) \mod G_{i,j} \leq G_{i,j} - d_j$$

où $G_{i,j} = \operatorname{pgcd}(P_i, P_j)$

Représentation de $d_i + d_j \leq G_{i,j}$



le pgcd des périodes vaut 4 :



- introduction
- 2 théorème
- preuve formelle
 - modélisation
 - théorème
 - corollaires
- 4 conclusion

Structures de données + Exemple

```
Tâche:
             Record Task :=
                 { id : nat; phase : nat; duration : nat; period : nat }.
Unité de temps :
             Inductive time unit :=
               E: time_unit
                                             (* processeur libre *)
                                            (* processeur occupé *)
               | A : nat \rightarrow time\_unit.
Exemple:
             A 1, A 3, A 3, A 2, E, E, A 1, E, E, E, E, E, A 1, ...
```

Fonctions

```
nth\_time\_unit : nat \rightarrow Task \rightarrow time\_unit
```

ullet renvoit la t^{ieme} unité de temps pour la tâche au

```
merge\_unit\_list : nat \rightarrow list Task \rightarrow option time\_unit
```

ullet renvoit la t^{ieme} unité de temps pour la liste de tâches aul

```
schedulable : list Task \rightarrow Prop :=
```

• $\forall t$, merge_unit_list t $\tau l \neq N$ one

Condition nécessaire

```
Si, pour tout couple de tâches (\tau_i, \tau_j) de \tauI, d_i \leq (\phi_j - \phi_i) \mod G_{i,j} \leq G_{i,j} - d_j alors \forall t, merge_unit_list t \tauI \neq None.
```

Preuve:

Par contradiction. On suppose donc que : $\exists \tau_i \tau_j t / \text{nth_time_unit } t \tau_i = A i \text{ nth_time_unit } t \tau_j = A j$

Puis, considérations sur les opérations élémentaires, les inégalités et les modulos. Voir article.

Réciproque

```
On doit montrer que si \forall \ \mathsf{t}, \ \mathsf{merge\_unit\_list} \ \mathsf{t} \ \tau \mathsf{l} \neq \mathsf{None}, \\ \mathsf{alors}, \ \mathsf{pour} \ \mathsf{tout} \ \mathsf{couple} \ \mathsf{de} \ \mathsf{t} \hat{\mathsf{aches}} \ (\tau_i, \ \tau_j) \ \mathsf{de} \ \tau \mathsf{l}, \\ d_i \leq (\phi_j - \phi_i) \ \mathsf{mod} \ G_{i,j} \leq G_{i,j} - d_j
```

Preuve : par la contraposée.

mais... mais... est-ce que ça va résoudre le problème?

Contraposée... problème!

En logique intuitioniste :

$$(\mathsf{A} \implies \mathsf{B}) \implies (\bar{\mathsf{B}} \implies \bar{\mathsf{A}})$$

Mais la réciproque n'est pas vraie, en général.

Sauf si B est décidable!

$$B =$$

Pour tout couple de tâches
$$(\tau_i, \tau_j)$$
 de τ I, $d_i \leq (\phi_j - \phi_i) \mod G_{i,j} \leq G_{i,j} - d_j$

Contraposée de la réciproque

S'il existe un couple de tâches (τ_i, τ_j) de τ l tel que :

$$d_i > (\phi_j - \phi_i) \mod G_{i,j} \lor (\phi_j - \phi_i) \mod G_{i,j} > G_{i,j} - d_j$$

alors

 \exists t, merge_unit_list t τ I = None.

Preuve : théorème de Bachet-Bézout.

Contraposée de la réciproque

S'il existe un couple de tâches (τ_i, τ_j) de τ l tel que :

$$d_i > (\phi_j - \phi_i) \mod G_{i,j} \lor (\phi_i - \phi_i) \mod G_{i,j} > G_{i,j} - d_i$$

alors

 \exists t, merge_unit_list t τ I = None.

Preuve : théorème de Bachet-Bézout.

$$\forall$$
 a b \in \mathbb{N} , \exists u v \in \mathbb{Z} / a.u + b.v = pgcd(a, b)

Contraposée de la réciproque

S'il existe un couple de tâches (τ_i, τ_j) de τ l tel que :

$$d_i > (\phi_j - \phi_i) \mod G_{i,j} \lor (\phi_i - \phi_i) \mod G_{i,j} > G_{i,j} - d_i$$

alors

 \exists t, merge_unit_list t τ I = None.

Preuve : théorème de Bachet-Bézout.

$$\forall$$
 a b $\in \mathbb{N}$, \exists u v $\in \mathbb{Z}$ / a.u + b.v = pgcd(a, b)

Bachet-Bézout sur les entiers naturels :

$$\forall$$
 a b \in N, \exists u v \in N / a.u = b.v + pgcd(a, b)

Corollaire 1 : somme des durées

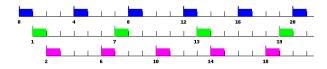
Une liste de tâches $\{\tau_1 ... \tau_n\}$ est ordonnançable si :

$$\sum_{\tau_k} d_k \leq \operatorname{pgcd} P_k$$

On choisit les phases : $\phi_1 = 0$ et $\phi_{i+1} = \phi_i + d_i$

Réciproque fausse en toute généralité. Exemple :

$$\{d_1=1; P_1=4\} \{d_2=1; P_2=6\} \{d_3=1; P_3=4\}$$



Corollaire 2 : deux tâches

Deux tâches τ_1 et τ_2 sont ordonnançables si et seulement si :

$$d_1+d_2\leq\operatorname{pgcd}(P_1,P_2)$$

Phases : $\phi_1 = 0$ et $\phi_2 = d_1$

Réciproque vraie dans ce cas.

- introduction
- 2 théorème
- 3 preuve formelle
- 4 conclusion

Concrètement...

- début 2011
- 2 mois de développement (débutant Coq)
- 2000 lignes de Coq
- sources sur le Web :
 http://pauillac.inria.fr/~ddr/publi/coq_korst/
- travail clos

Conclusion et Travaux futurs

- Preuves formelles possibles dans ce domaine.
- Opinion perso : Coq = révolution dans les maths!
- Autre théorème en cours : tâches préemptives avec priorité.
- Preuves formelles de *programmes* embarqués? Projet P (Oséo).
- Preuve formelle du noyau de SynDEx?
- Tactiques : ssreflect de Microsoft Research-Inria?